Understanding photothermal interactions can help expand production range and increase genetic diversity of lentil (Lens culinaris Medik.)

Plants, People, Planet. 00:1-11.


Data Preparation

Load the nessesary R packages, Prepare the data for analysis.

#install.packages(c("tidyverse","scales","rworldmap","ggrepel","magick",
#                   "GGally","ggpubr,"ggbeeswarm","FactoMineR","plot3D","stringr",
#                   "plotly","leaflet","leaflet.minicharts","htmlwidgets"))
# Load libraries
library(tidyverse)   # data wrangling
library(scales)      # rescale()
library(rworldmap)   # mapBubbles()
library(ggrepel)     # geom_text_repel() + geom_label_repel()
library(magick)      # image editing
library(GGally)      # ggpairs() + ggmatrix()
library(ggpubr)      # ggarrange()
library(ggbeeswarm)  # geom_quasirandom()
library(FactoMineR)  # PCA() & HCPC()
library(plot3D)      # 3D plots
library(stringr)     # str_pad()
library(plotly)      # plot_ly()
library(leaflet)     # leaflet()
library(leaflet.minicharts) # addMinicharts()
library(htmlwidgets) # saveWidget()
# General color palettes 
colors <- c("darkred",   "darkorange3", "darkgoldenrod2", "deeppink3", 
            "steelblue", "darkorchid4", "cornsilk4",      "darkgreen") 
# Expts color palette
colors_Expt <- c("lightgreen",      "palegreen4",       "darkgreen",   "darkolivegreen3",
                 "darkolivegreen4", "springgreen4",     "orangered2",  "orangered4",
                 "palevioletred",    "mediumvioletred", "orange2",     "orange4", 
                 "slateblue1",       "slateblue4",      "aquamarine3", "aquamarine4", 
                 "deepskyblue3",     "deepskyblue4" )
# Locations
names_Location <- c("Rosthern, Canada", "Sutherland, Canada",  "Central Ferry, USA",
                    "Bhopal, India",    "Jessore, Bangladesh", "Bardiya, Nepal",
                    "Cordoba, Spain",   "Marchouch, Morocco",  "Metaponto, Italy" )
# Experiments
names_Expt <- c("Rosthern, Canada 2016",    "Rosthern, Canada 2017",
                "Sutherland, Canada 2016",  "Sutherland, Canada 2017", 
                "Sutherland, Canada 2018",  "Central Ferry, USA 2018",
                "Bhopal, India 2016",       "Bhopal, India 2017",
                "Jessore, Bangladesh 2016", "Jessore, Bangladesh 2017",
                "Bardiya, Nepal 2016",      "Bardiya, Nepal 2017",
                "Cordoba, Spain 2016",      "Cordoba, Spain 2017",
                "Marchouch, Morocco 2016",  "Marchouch, Morocco 2017",
                "Metaponto, Italy 2016",    "Metaponto, Italy 2017" )
# Experiment short names
names_ExptShort <- c("Ro16", "Ro17", "Su16", "Su17", "Su18", "Us18",
                     "In16", "In17", "Ba16", "Ba17", "Ne16", "Ne17", 
                     "Sp16", "Sp17", "Mo16", "Mo17", "It16", "It17" )
# Macro-Environments
names_MacroEnvs <- c("Temperate", "South Asia", "Mediterranean")
# Lentil Diversity Panel metadata
ldp <- read.csv("data/data_ldp.csv")
# Country info
ct <- read.csv("data/data_countries.csv") %>% filter(Country %in% ldp$Origin)
# ggplot theme
theme_AGL <- theme_bw() + 
  theme(strip.background   = element_rect(colour = "black", fill = NA, size = 0.5),
        panel.background   = element_rect(colour = "black", fill = NA, size = 0.5),
        panel.border       = element_rect(colour = "black", size = 0.5),
        panel.grid         = element_line(color  = alpha("black", 0.1), size = 0.5),
        panel.grid.minor.x = element_blank(), 
        panel.grid.minor.y = element_blank())
# Create scaling function
traitScale <- function(x, trait) {
  xout <- rep(NA, nrow(x))
  for(i in unique(x$Expt)) {
    mn <- x %>% filter(Expt == i) %>% pull(trait) %>% min(na.rm = T)
    mx <- x %>% filter(Expt == i) %>% pull(trait) %>% max(na.rm = T)
    xout <- ifelse(x$Expt == i, rescale(x %>% pull(trait), c(1,5), c(mn,mx)), xout)
  }
  xout
}
# Prep data
# Notes: 
# - DTF2 = non-flowering genotypes <- group_by(Expt) %>% max(DTF)
rr <- read.csv("data/data_raw.csv") %>% 
  mutate(Rep          = factor(Rep), 
         Year         = factor(Year), 
         PlantingDate = as.Date(PlantingDate),
         Location     = factor(Location, levels = names_Location),
         Expt         = factor(Expt,     levels = names_Expt),
         ExptShort    = plyr::mapvalues(Expt, names_Expt, names_ExptShort),
         ExptShort    = factor(ExptShort, levels = names_ExptShort),
         DTF2_scaled  = traitScale(., "DTF2"),
         RDTF         = round(1 / DTF2, 6),
         VEG          = DTF - DTE,
         REP          = DTM - DTF)
# Average raw data
dd <- rr %>% 
  group_by(Entry, Name, Expt, ExptShort, Location, Year) %>%
  summarise_at(vars(DTE, DTF, DTS, DTM, VEG, REP, RDTF, DTF2),
               funs(mean), na.rm = T) %>% 
  ungroup() %>%
  mutate(DTF2_scaled = traitScale(., "DTF2"))
# Prep environmental data
ee <- read.csv("data/data_env.csv") %>%
  mutate(Date      = as.Date(Date),
         ExptShort = plyr::mapvalues(Expt, names_Expt, names_ExptShort),
         ExptShort = factor(ExptShort, levels = names_ExptShort),
         Expt      = factor(Expt,      levels = names_Expt),
         Location  = factor(Location,  levels = names_Location),
         MacroEnv  = factor(MacroEnv,  levels = names_MacroEnvs),
         DayLength_rescaled = rescale(DayLength, to = c(0, 40)) )
# Prep field trial info
xx <- dd %>% group_by(Expt) %>%
  summarise_at(vars(DTE, DTF, DTS, DTM), funs(min, mean, max), na.rm = T) %>% 
  ungroup()
ff <- read.csv("data/data_info.csv") %>% 
  mutate(Start = as.Date(Start) ) %>%
  left_join(xx, by = "Expt")
for(i in unique(ee$Expt)) {
  ee <- ee %>% 
    filter(Expt != i | (Expt == i & DaysAfterPlanting <= ff$DTM_max[ff$Expt == i]))
}
xx <- ee
for(i in unique(ee$Expt)) {
  xx <- xx %>% 
    filter(Expt != i | (Expt == i & DaysAfterPlanting <= ff$DTF_max[ff$Expt == i]))
} 
xx <- xx %>% 
  group_by(Location, Year) %>% 
  summarise(T_mean = mean(Temp_mean, na.rm = T), T_sd = sd(Temp_mean, na.rm = T),
            P_mean = mean(DayLength, na.rm = T), P_sd = sd(DayLength, na.rm = T) ) %>% 
  ungroup() %>%
  mutate(Expt = paste(Location, Year)) %>%
  select(-Location, -Year)
ff <- ff %>% 
  left_join(xx, by = "Expt") %>% 
  mutate(ExptShort = plyr::mapvalues(Expt, names_Expt, names_ExptShort),
         ExptShort = factor(ExptShort, levels = names_ExptShort),
         Expt      = factor(Expt,      levels = names_Expt),
         Location  = factor(Location,  levels = names_Location),
         MacroEnv  = factor(MacroEnv,  levels = names_MacroEnvs),
         T_mean    = round(T_mean, 1),
         P_mean    = round(P_mean, 1))
  • ldp = Lentil Diversity Panel Metadata
  • rr = Raw Phenotype Data
  • dd = Averaged Phenotype Data
  • ee = Environmental Data
  • ff = Field Trial Info
  • ct = Country Info

Materials & Methods

Supplemental Table 1: LDP

Table S1: Genotype entry number, name, common synonyms, origin and source of lentil genotypes used in this study. These genotypes are gathered from the University of Saskatchewan (USASK), Plant Gene Resources of Canada (PGRC), United States Department of Agriculture (USDA), International Center for Agricultural Research in the Dry Areas (ICARDA).

s1 <- select(ldp, Entry, Name, Origin, Source, Synonyms)
write.csv(s1, "Supplemental_Table_01.csv", row.names = F)

Supplemental Table 2: Field Trial Info

Table S2: Details of the field trials used in this study, including location information, planting dates, mean temperature and photoperiods and details on plot type and number of seeds sown.

s2 <- ff %>%
  select(Location, Year, `Short Name`=ExptShort, Latitude=Lat, Longitude=Lon,
         `Planting Date`=Start, `Temperature (mean)`=T_mean, `Photoperiod (mean)`=P_mean, 
         `Number of Seeds Sown`=Number_of_Seeds_Sown, `Plot Type`=Plot_Type)
write.csv(s2, "Supplemental_Table_02.csv", row.names = F)
xx <- ee %>% 
  select(ExptShort, Temp_min, Temp_max, DayLength) %>%
  group_by(ExptShort) %>%
  summarise(Temp_min = min(Temp_min),
            Temp_max = max(Temp_max),
            Photoperiod_min = min(DayLength),
            Photoperiod_max = max(DayLength))
knitr::kable(xx)
ExptShort Temp_min Temp_max Photoperiod_min Photoperiod_max
Ro16 -2.251 41.123 14.51 16.62
Ro17 0.107 42.541 14.89 16.62
Su16 -3.720 46.528 14.51 16.52
Su17 -2.200 37.419 14.91 16.52
Su18 -0.686 41.940 13.94 16.52
Us18 1.670 36.670 12.49 15.64
In16 0.900 37.500 10.58 12.14
In17 5.380 35.690 10.58 11.59
Ba16 7.900 33.100 10.57 12.02
Ba17 5.390 39.460 10.57 12.15
Ne16 2.000 38.600 10.20 12.64
Ne17 NA NA 10.19 12.82
Sp16 -2.900 34.000 9.37 14.18
Sp17 -3.100 31.100 9.37 14.17
Mo16 -1.700 36.900 9.77 13.59
Mo17 -1.000 28.100 9.77 14.18
It16 -5.832 31.250 9.11 14.73
It17 -2.366 32.750 9.11 14.59

Figure 1: Field Trial Info

Figure 1: Growing Environments. (a) Locations of field trials conducted in the summer and winter of 2016, 2017 and 2018, along with (b) mean temperature and photoperiod of each field trial: Rosthern, Canada 2016 and 2017 (Ro16, Ro17), Sutherland, Canada 2016, 2017 and 2018 (Su16, Su17, Su18), Central Ferry, USA 2018 (Us18), Metaponto, Italy 2016 and 2017 (It16, It17), Marchouch, Morocco 2016 and 2017 (Mo16, Mo17), Cordoba, Spain 2016 and 2017 (Sp16, Sp17), Bhopal, India 2016 and 2017 (In16, In17), Jessore, Bangladesh 2016 and 2017 (Ba16, Ba17), Bardiya, Nepal 2016 and 2017 (Ne16, Ne17).

# Plot (a) Map
invisible(png("Additional/Temp/Temp_F01_1.png", 
              width = 4200, height = 1575, res = 600))
par(mai = c(0,0,0,0), xaxs = "i", yaxs = "i")
mapBubbles(dF = ff, nameX = "Lon", nameY = "Lat", 
           nameZColour = "MacroEnv", nameZSize = "Year", 
           symbolSize = 0.5, pch = 20, fill = F, addLegend = F,
           colourPalette = c("darkgreen", "darkorange3", "darkblue"), 
           addColourLegend = F, 
           xlim = c(-140,110), ylim = c(10,35),  
           oceanCol = "grey90", landCol = "white", borderCol = "black")
invisible(dev.off())
# Plot (b) mean T and P
mp <- ggplot(ff, aes(x = T_mean, y = P_mean)) + 
  geom_point(aes(color = MacroEnv), size = 3, alpha = 0.8) + 
  geom_text_repel(aes(label = ExptShort)) + 
  scale_x_continuous(breaks = 11:22) + scale_y_continuous(breaks = 11:16) +
  scale_color_manual(name = "Macro-Environment", 
                     values = c("darkgreen","darkorange3","darkblue")) +
  theme_AGL + 
  theme(legend.position = "top", legend.margin = unit(c(0,0,0,0), "cm")) +
  labs(x = expression(paste("Mean temperature (", degree, "C)", sep = "")), 
       y = "Mean photoperiod (h)")
ggsave("Additional/Temp/Temp_F01_2.png", mp, 
       width = 7, height = 3.25, dpi = 600)
# Labels were added to "Additional/Temp/Temp_F1_1.png" in image editing software
# Append (a) and (b)
im1 <- image_read("Additional/Temp/Temp_F01_1_1.png") %>% 
  image_annotate("(a)", size = 35)
im2 <- image_read("Additional/Temp/Temp_F01_2.png") %>% 
  image_scale("1200x") %>%
  image_annotate("(b)", size = 35)
im <- image_append(c(im1, im2), stack = T)
image_write(im, "Figure_01.png")

Additional Figure 1: LDP Origin Map

# Prep data
x1 <- ldp %>% filter(Origin != "Unknown") %>%
  mutate(Origin = recode(Origin, "ICARDA"="Syria", "USDA"="USA")) %>% 
  group_by(Origin) %>% 
  summarise(Count = n()) %>% 
  left_join(select(ct, Origin = Country, Lat, Lon), by = "Origin") %>% 
  ungroup() %>% 
  as.data.frame()
x1[is.na(x1)] <- 0
# Plot
invisible(png("Additional/Additional_Figure_01.png", 
              width = 3600, height = 2055, res = 600))
par(mai = c(0,0,0,0), xaxs = "i",yaxs = "i")
mapBubbles(dF = x1, nameX = "Lon", nameY = "Lat", 
           nameZSize = "Count", nameZColour = "darkred", 
           xlim = c(-140,110), ylim = c(5,20),
           oceanCol = "grey90", landCol = "white", borderCol = "black")
invisible(dev.off())

Supplemental Figure 1: DTF Scaling

Figure S1: Distribution of days from sowing to flowering for raw data (top) and scaled data (1-5) (bottom) for all 18 field trials: Rosthern, Canada 2016 and 2017 (Ro16, Ro17), Sutherland, Canada 2016, 2017 and 2018 (Su16, Su17, Su18), Central Ferry, USA 2018 (Us18), Metaponto, Italy 2016 and 2017 (It16, It17), Marchouch, Morocco 2016 and 2017 (Mo16, Mo17), Cordoba, Spain 2016 and 2017 (Sp16, Sp17), Bhopal, India 2016 and 2017 (In16, In17), Jessore, Bangladesh 2016 and 2017 (Ba16, Ba17), Bardiya, Nepal 2016 and 2017 (Ne16, Ne17). Genotypes which did not flower were given a scaled value of 5.

# Prep data
levs <- c("Days from sowing to flower (days)", "Scaled (1-5)")
xx <- dd %>% select(Entry, Expt, ExptShort, DTF, DTF2_scaled) %>%
  left_join(select(ff, Expt, MacroEnv), by = "Expt") %>%
  gather(Trait, Value, DTF, DTF2_scaled) %>% 
  mutate(Trait = plyr::mapvalues(Trait, c("DTF", "DTF2_scaled"), levs),
         Trait = factor(Trait, levels = levs) )
# Plot
mp <- ggplot(xx, aes(x = ExptShort, y = Value)) + 
  geom_violin(fill = "grey", alpha = 0.3, color = NA) + 
  geom_quasirandom(aes(color = MacroEnv), size = 0.1, alpha = 0.5) +
  scale_color_manual(values = c("darkgreen","darkorange3","darkblue")) +
  facet_grid(Trait ~ MacroEnv, scales = "free") + 
  theme_AGL + 
  theme(legend.position = "none",
        panel.grid.major.x = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(x = NULL, y = NULL)
ggsave("Supplemental_Figure_01.png", mp, width = 8, height = 5, dpi = 600)

Phenology

Figure 2: Data Overview

Figure 2: Variations in temperature, day length and phenological traits across contrasting environment for a lentil (Lens culinaris Medik.) diversity panel. (a) Daily mean temperature (red line) and day length (blue line) from seeding to full maturity of all genotypes. The shaded ribbon represents the daily minimum and maximum temperature. The shaded area between the vertical bars corresponds to the windows of flowering. (b) Distribution of mean days from sowing to: flowering (DTF), swollen pods (DTS) and maturity (DTM), and (c) vegetative (VEG) and reproductive periods (REP) of 324 genotypes across 18 site-years. Rosthern, Canada 2016 and 2017 (Ro16, Ro17), Sutherland, Canada 2016, 2017 and 2018 (Su16, Su17, Su18), Central Ferry, USA 2018 (Us18), Metaponto, Italy 2016 and 2017 (It16, It17), Marchouch, Morocco 2016 and 2017 (Mo16, Mo17), Cordoba, Spain 2016 and 2017 (Sp16, Sp17), Bhopal, India 2016 and 2017 (In16, In17), Jessore, Bangladesh 2016 and 2017 (Ba16, Ba17), Bardiya, Nepal 2016 and 2017 (Ne16, Ne17).

# Create plot function
ggEnvPlot <- function(x, mybreaks, nr = 2, nc = 3) {
  yy <- ff %>% 
    filter(Expt %in% unique(x$Expt)) %>% 
    select(ExptShort, Location, Year, min=DTF_min, max=DTF_max) %>%
    mutate(Trait = "DTF Window")
  ggplot(x) +
    geom_rect(data = yy, aes(xmin = min, xmax = max, fill = Trait),   
              ymin = -Inf, ymax = Inf, alpha = 0.1, color = "black") +
    geom_line(aes(x = DaysAfterPlanting, y = DayLength_rescaled, color = "Day Length")) +
    geom_line(aes(x = DaysAfterPlanting, y = Temp_mean, color = "Temperature") ) +
    geom_ribbon(aes(x = DaysAfterPlanting, ymin = Temp_min, ymax = Temp_max),
                fill = "darkred", alpha = 0.3) +
    facet_wrap(ExptShort ~ ., scales = "free_x", dir = "v", nrow = 2, ncol = 3) +
    scale_x_continuous(breaks = mybreaks) +
    scale_color_manual(name = NULL, values = c("darkblue", "darkred")) +
    scale_fill_manual(name = NULL, values = "darkgreen") +
    guides(colour = guide_legend(order = 1, override.aes = list(size = 1.25)), 
           fill = guide_legend(order = 2)) +
    coord_cartesian(ylim=c(0, 40)) +
    theme_AGL + 
    theme(plot.margin = unit(c(0,0,0,0), "cm"), 
          legend.text = element_text(size = 12)) +
    labs(y = NULL, x = NULL)
}
# Plot (a) T and P
mp1.1 <- ggEnvPlot(ee %>% filter(MacroEnv == "Temperate"), c(25, 50, 75)) +
  labs(y = expression(paste("Degrees Celcius (", degree, "C)"))) + 
  theme(strip.background = element_rect(alpha("darkgreen", 0.3)),
        plot.margin = unit(c(0,0,0,0.155), "cm"))
mp1.2 <- ggEnvPlot(ee %>% filter(MacroEnv == "South Asia"), c(25, 75, 125)) +
  labs(x = "Days After Planting") +
  theme(strip.background = element_rect(fill = alpha("darkgoldenrod2", 0.3)),
        axis.text.y = element_blank(), axis.ticks.y = element_blank())
mp1.3 <- ggEnvPlot(ee %>% filter(MacroEnv == "Mediterranean"), c(50, 100, 150)) +
  scale_y_continuous(sec.axis = sec_axis(~ (16.62 - 9.11) * . / (40 - 0) + 9.11,
                     name = "Hours (h)", breaks = c(10, 12, 14, 16))) +
  theme(strip.background = element_rect(fill = alpha("darkblue", 0.3)),
        plot.margin = unit(c(0,0.17,0,0), "cm"),
        axis.text.y.left = element_blank(), axis.ticks.y.left = element_blank())
mp1 <- ggarrange(mp1.1, mp1.2, mp1.3, nrow = 1, ncol = 3, align = "h",
                 legend = "top", common.legend = T)
# Prep data
xx <- dd %>% select(Entry, Year, Expt, ExptShort, Location, DTF, DTS, DTM) %>%
  left_join(select(ff, Expt, MacroEnv), by = "Expt") %>%
  gather(Trait, Value, DTF, DTS, DTM) %>%
  mutate(Trait = factor(Trait, levels = c("DTF", "DTS", "DTM")))
# Create plot function
ggDistroDTF <- function(x) {
  ggplot(x, aes(x = Trait, y = Value) ) +
    geom_violin(color = NA, fill = "grey", alpha = 0.3) + 
    geom_quasirandom(size = 0.3, aes(color = Trait)) +
    facet_wrap(ExptShort ~ ., scales = "free_x", dir = "v", ncol = 3, nrow = 2) + 
    scale_color_manual(values = c("darkgreen", "darkred", "darkgoldenrod2")) +
    scale_y_continuous(limits = c(30,190), breaks = seq(25,175, 25)) +
    theme_AGL + labs(y = NULL, x = NULL) +
    theme(plot.margin = unit(c(0.1,0,0.3,0), "cm"))
}
# Plot (b) DTF, DTS and DTM
mp2.1 <- ggDistroDTF(xx %>% filter(MacroEnv == "Temperate")) + 
  labs(y = "Days After Planting") + 
  theme(strip.background = element_rect(fill = alpha("darkgreen", 0.3)),
        panel.grid.major.x = element_blank())
mp2.2 <- ggDistroDTF(xx %>% filter(MacroEnv == "South Asia")) +
  theme(strip.background = element_rect(fill = alpha("darkgoldenrod2", 0.3)),
        panel.grid.major.x = element_blank(),
        axis.text.y = element_blank(), axis.ticks.y = element_blank())
mp2.3 <- ggDistroDTF(xx %>% filter(MacroEnv == "Mediterranean")) +
  scale_y_continuous(limits = c(30,190), breaks = seq(25,175, 25),
                     sec.axis = sec_axis(~ ., name = "Days After Planting", 
                                         breaks = seq(25,175, 25))) +
  theme(strip.background = element_rect(fill = alpha("darkblue", 0.3)),
        panel.grid.major.x = element_blank(), 
        panel.grid.minor.x = element_line(),
        axis.text.y.left = element_blank(), 
        axis.ticks.y.left = element_blank() )
# Append
mp2 <- ggarrange(mp2.1, mp2.2, mp2.3, nrow = 1, ncol = 3, align = "h", legend = "none")
# Prep data
xx <- dd %>% select(Entry, Name, Expt, ExptShort, Location, Year, VEG, REP) %>%
  left_join(select(ff, Expt, MacroEnv), by = "Expt") %>%
  gather(Trait, Value, VEG, REP) %>% 
  mutate(Trait = factor(Trait, levels = c("VEG", "REP")))
# Create plot function
ggDistroREP <- function(x) {
  ggplot(x, aes(x = Trait, y = Value)) + 
    geom_violin(color = NA, fill = "grey", alpha = 0.3) + 
    geom_quasirandom(size = 0.3, aes(color = Trait)) +
    facet_wrap(ExptShort ~ ., scales = "free_x", dir = "v", ncol = 3, nrow = 2) +
    scale_color_manual(values = c("steelblue", "purple")) +
    scale_y_continuous(limits = c(25,135), breaks = seq(25,125, 25)) +
    theme_AGL + labs(x = NULL, y = NULL) + 
    theme(plot.margin = unit(c(0,0,0.3,0), "cm"))
}
# Plot (c) REP and VEG
mp3.1 <- ggDistroREP(xx %>% filter(MacroEnv == "Temperate")) + labs(y = "Days") +
  theme(strip.background = element_rect(fill = alpha("darkgreen", 0.3)),
        panel.grid.major.x = element_blank())
mp3.2 <- ggDistroREP(xx %>% filter(MacroEnv == "South Asia")) + 
  theme(strip.background = element_rect(fill = alpha("darkgoldenrod2", 0.3)),
        axis.text.y = element_blank(), axis.ticks.y = element_blank(),
        panel.grid.major.x = element_blank())
mp3.3 <- ggDistroREP(xx %>% filter(MacroEnv == "Mediterranean")) +
  scale_y_continuous(limits = c(25,135), breaks = seq(25,125, 25),
                     sec.axis = sec_axis(~ ., name = "Days", breaks = seq(25,125, 25))) +
  theme(strip.background = element_rect(fill = alpha("darkblue", 0.3)),
        axis.text.y.left = element_blank(), axis.ticks.y.left = element_blank(),
        panel.grid.major.x = element_blank())
# Append
mp3 <- ggarrange(mp3.1, mp3.2, mp3.3, nrow = 1, ncol = 3, align = "h", legend = "none")
# Save
ggsave("Additional/Temp/Temp_F02_1.png", mp1, width = 12, height = 4, dpi = 500, bg = "white")
ggsave("Additional/Temp/Temp_F02_2.png", mp2, width = 12, height = 4, dpi = 500)
ggsave("Additional/Temp/Temp_F02_3.png", mp3, width = 12, height = 4, dpi = 500)
# Append (a), (b) and (c)
mp1 <- image_read("Additional/Temp/Temp_F02_1.png") %>% image_annotate("(a)", size = 150)
mp2 <- image_read("Additional/Temp/Temp_F02_2.png") %>% image_annotate("(b)", size = 150)
mp3 <- image_read("Additional/Temp/Temp_F02_3.png") %>% image_annotate("(c)", size = 150)
mp <- image_append(c(mp1, mp2, mp3), stack = T)
image_write(mp, "Figure_02.png")

Additional Figures: Entry Phenology

# Create plotting function
ggPhenology <- function(x, xE, colnums) {
  mycols <- c("darkgreen", "darkorange3", "darkblue")
  ggplot(xE, aes(x = Trait, y = Value, group = Entry, color = MacroEnv)) +
    geom_line(data = x, color = "grey", alpha = 0.5) +
    geom_line() + 
    geom_point() +
    facet_grid(MacroEnv ~ ExptShort) +
    scale_color_manual(values = mycols[colnums]) +
    theme_AGL + 
    theme(legend.position = "none", panel.grid.major.x = element_blank()) +
    ylim(c(min(x$Value, na.rm = T), max(x$Value, na.rm = T))) +
    labs(x = NULL, y = "Days")
}
# Prep data
xx <- dd %>% select(Entry, Name, ExptShort, DTF, DTS, DTM) %>% 
  left_join(select(ff, ExptShort, MacroEnv), by = "ExptShort") %>%
  gather(Trait, Value, DTF, DTS, DTM) %>%
  mutate(Trait = factor(Trait, levels = c("DTF","DTS","DTM")))
x1 <- xx %>% filter(MacroEnv == "Temperate")
x2 <- xx %>% filter(MacroEnv == "South Asia")
x3 <- xx %>% filter(MacroEnv == "Mediterranean")
# Create PDF
pdf("Additional/pdf_Phenology.pdf", width = 8, height = 6)
for(i in 1:324) {
  xE1 <- xx %>% filter(Entry == i, !is.na(Value), MacroEnv == "Temperate") 
  xE2 <- xx %>% filter(Entry == i, !is.na(Value), MacroEnv == "South Asia")
  xE3 <- xx %>% filter(Entry == i, !is.na(Value), MacroEnv == "Mediterranean")
  mp1 <-  ggPhenology(x1, xE1, 1)
  mp2 <-  ggPhenology(x2, xE2, 2)
  mp3 <-  ggPhenology(x3, xE3, 3)
  figlab <- paste("Entry", str_pad(i, 3, "left", "0"), "|", unique(xE1$Name))
  mp <- ggarrange(mp1, mp2, mp3, nrow = 3, ncol = 1) %>%
    annotate_figure(top = figlab)
  print(mp)
  ggsave(paste0("Additional/Entry_Phenology/Phenology_Entry_", 
                str_pad(i, 3, "left", "0"), ".png"), 
         mp, width = 8, height = 6, dpi = 600)
}
dev.off()

Additional Figure 2: DTF DTS DTM

# Prep data
xx <- dd %>% select(Entry, Expt, ExptShort, DTF, DTS, DTM) %>%
  left_join(select(ff, Expt, MacroEnv), by = "Expt") %>%
  gather(Trait, Value, DTF, DTS, DTM) %>% 
  mutate(Trait = factor(Trait, levels = c("DTF", "DTS", "DTM")) )
# Plot
mp <- ggplot(xx, aes(x = ExptShort, y = Value)) +
  geom_violin(fill = "grey", alpha = 0.25, color = NA) + 
  geom_quasirandom(size = 0.1, alpha = 0.5, aes(color = MacroEnv)) +
  facet_grid(Trait ~ MacroEnv, scales = "free") + 
  scale_color_manual(values = c("darkgreen", "darkorange3", "darkblue")) +
  theme_AGL +
  theme(legend.position = "none",
        panel.grid.major.x = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(x = NULL, y = "Days After Planting")
ggsave("Additional/Additional_Figure_02.png", mp, width = 8, height = 6, dpi = 600)

Additional Figure 3: ggridges

# Prep data
xx <- dd %>% select(Expt, DTF, DTS, DTM) %>% 
  gather(Trait, Value, DTF, DTS, DTM) %>%
  mutate(Trait = factor(Trait, levels = c("DTF", "DTS", "DTM")))
# Plot
mp <- ggplot(xx, aes(x = Value, y = Expt, fill = Trait)) + 
  ggridges::geom_density_ridges(alpha = 0.7) +
  scale_fill_manual(name = NULL, values = c("darkgreen", "darkred", "darkgoldenrod2")) +
  theme_AGL + 
  theme(legend.position = "top", legend.margin = unit(c(0,0,0,0), "cm")) +
  labs(y = NULL, x = "Days After Sowing")
ggsave("Additional/Additional_Figure_03.png", mp, width = 6, height = 4, dpi = 600)

Additional Figure 4: MacroEnv Phenology

# Prep data
xx <- ee %>% filter(ExptShort %in% c("Su17", "Ba17", "It17")) 
yy <- ff %>% filter(Expt %in% unique(xx$Expt)) %>% 
  mutate(DTF_min = Start + DTF_min, DTF_max = Start + DTF_max,
         DTM_min = Start + DTM_min, DTM_max = Start + DTM_max)
y1 <- select(yy, Expt, Location, Year, MacroEnv, min = DTF_min, max = DTF_max) %>% 
  mutate(Trait = "DTF")
y2 <- select(yy, Expt, Location, Year, MacroEnv, min = DTM_min, max = DTM_max) %>% 
  mutate(Trait = "DTM")
yy <- bind_rows(y1, y2)
# Plot
mp <- ggplot(xx) +
  geom_rect(data = yy, aes(xmin = min, xmax = max, fill = Trait), 
            ymin = 0, ymax = 40, alpha = 0.4) +
  geom_line(aes(x = Date, y = DayLength_rescaled, color = "Blue")) +
  geom_line(aes(x = Date, y = Temp_mean, color = "darkred") ) +
  geom_ribbon(aes(x = Date, ymin = Temp_min, ymax = Temp_max),
              fill = alpha("darkred", 0.25), color = alpha("darkred", 0.25)) +
  facet_grid(Location + MacroEnv  ~ ., scales = "free_x", space = "free_x") +
  scale_color_manual(name = NULL, values = c("Blue", "darkred"), 
                    labels = c("Day length", "Temperature") ) +
  scale_fill_manual(name = NULL, values = c("darkgreen", "darkgoldenrod2")) +
  coord_cartesian(ylim = c(0,40)) +
  theme_AGL +
  theme(legend.position = "bottom", 
        legend.text = element_text(size = 12),
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  scale_x_date(breaks = "1 month", labels = date_format("%b")) +
  scale_y_continuous(sec.axis = sec_axis(~ (16.62 - 9.11) * . / (40 - 0) + 9.11, 
                     breaks = c(10, 12, 14, 16), name = "Hours")) +
  guides(colour = guide_legend(order = 1, override.aes = list(size = 1.25)), 
         fill   = guide_legend(order = 2)) +
  labs(title = "2017 - 2018", x = NULL, 
       y = expression(paste(degree, "Celcius")))
  
ggsave("Additional/Additional_Figure_04.png", mp, width = 8, height = 6, dpi = 600)

Additional Figures: Phenology + EnvData

# Plotting function
ggPhenologyEnvD <- function(exptshort = "Ro17") {
  # Prep data
  x1 <- dd %>% filter(ExptShort == exptshort) %>%
    select(Entry, Name, ExptShort, Expt, DTF, DTS, DTM) %>%
    gather(Trait, Value, DTF, DTS, DTM) %>%
    mutate(Trait = factor(Trait, levels = c("DTF", "DTS", "DTM")))
  x2 <- ee %>% filter(ExptShort == exptshort)
  myMax <- max(x2$DaysAfterPlanting)
  myColors <- c("steelblue", "darkgreen", "darkgoldenrod2")
  # Plot
  mp1 <- ggplot(x1, aes(x = Value, fill = Trait)) +
    geom_density(alpha = 0.7) +
    facet_grid(. ~ Expt) +
    scale_fill_manual(name = NULL, values = myColors) +
    coord_cartesian(xlim = c(0,myMax)) +
    theme_AGL +
    theme(legend.position = "top",
          axis.text.x  = element_blank(),
          axis.ticks.x = element_blank()) +
    labs(x = NULL, y = NULL)
  mp2 <- ggplot(x2) +
    geom_line(aes(x = DaysAfterPlanting, y = DayLength_rescaled, color = "Blue")) +
    geom_line(aes(x = DaysAfterPlanting, y = Temp_mean, color = "darkred") ) +
    geom_ribbon(aes(x = DaysAfterPlanting, ymin = Temp_min, ymax = Temp_max),
                fill = alpha("darkred", 0.25), color = alpha("darkred", 0.25)) +
    scale_color_manual(name = NULL, values = c("Blue", "darkred"), 
                       labels = c("Day length", "Temperature") ) +
    coord_cartesian(ylim = c(0,40)) +
    theme_AGL +
    theme(legend.position = "bottom", 
          legend.text = element_text(size = 12)) +
    scale_x_continuous(limits = c(0, myMax)) +
    scale_y_continuous(sec.axis = sec_axis(~ (16.62 - 9.11) * . / (40 - 0) + 9.11, 
                          breaks = c(10, 12, 14, 16), name = "Hours")) +
    guides(colour = guide_legend(order = 1, override.aes = list(size = 1.25)), 
           fill   = guide_legend(order = 2)) +
    labs(y = expression(paste(degree, "Celcius"), x = NULL))
  ggarrange(mp1, mp2, nrow = 2, align = "v", heights = c(1, 1.2))
}
for(i in names_ExptShort) {
  mp <- ggPhenologyEnvD(i)
  ggsave(paste0("Additional/Expt/1_", i, ".png"), width = 6, height = 6)
}
im <- image_read(paste0("Additional/Expt/1_", names_ExptShort[1:6], ".png"))
im <- image_append(c(image_append(im[1:3]), image_append(im[4:6])), stack = T)
image_write(im, "Additional/Expt/2_Temperate.png")
im <- image_read(paste0("Additional/Expt/1_", names_ExptShort[7:12], ".png"))
im <- image_append(c(image_append(im[1:3]), image_append(im[4:6])), stack = T)
image_write(im, "Additional/Expt/2_SouthAsia.png")
im <- image_read(paste0("Additional/Expt/1_", names_ExptShort[13:18], ".png"))
im <- image_append(c(image_append(im[1:3]), image_append(im[4:6])), stack = T)
image_write(im, "Additional/Expt/2_Mediterranean.png")

Supplemental Figure 2: Missing Data

Figure S2: Percentage of lentil genotypes reaching key phenological time points in South Asian locations. Days from sowing to: flowering (DTF), swollen pods (DTS) and maturity (DTM).

# Prep data
xx <- dd %>% 
  filter(Location %in% c("Bhopal, India", "Jessore, Bangladesh", "Bardiya, Nepal")) %>%
  mutate(DTF = ifelse(is.na(DTF), 0, 1),
         DTS = ifelse(is.na(DTS), 0, 1),
         DTM = ifelse(is.na(DTM), 0, 1) ) %>% 
  group_by(Expt, Location, Year) %>% 
  summarise_at(vars(DTF, DTS, DTM), funs(sum), na.rm = T) %>%
  ungroup() %>% 
  gather(Trait, Flowered, DTF, DTS, DTM) %>%
  mutate(Total = ifelse(Expt == "Bardiya, Nepal 2016", 323, 324),
         # One accession was not planted in Bardiya, Nepal 2016
         DidNotFlower = Total - Flowered,
         Percent = round(100 * Flowered / Total),
         Label = paste0(Percent, "%"),
         Trait = factor(Trait, levels = c("DTF", "DTS", "DTM")))
# Plot
mp <- ggplot(xx, aes(x = Trait, y = Percent, fill = Trait)) + 
  geom_bar(stat = "identity", color = "black", alpha = 0.7) + 
  geom_text(aes(label = Label), nudge_y = -3, size = 3.5) + 
  facet_grid(. ~ Location + Year) + 
  scale_fill_manual(values = c("darkgreen", "darkred", "darkgoldenrod2")) + 
  scale_y_continuous(limits = c(0,100), expand = c(0,0)) +
  theme_AGL + 
  theme(legend.position = "none",
        panel.grid.major.x = element_blank() ) + 
  labs(x = NULL, y = "Percent of accessions reaching key phenological time points")
ggsave("Supplemental_Figure_02.png", width = 10, height = 5, dpi = 600)

Supplemental Figure 3: Correlation Plots

Figure S3: Correlations along with the corresponding correlation coefficients (R2) between days from sowing to: flowering (DTF), swollen pod (DTS) and maturity (DTM), in temperate (top), South Asian (middle) and Mediterranean (bottom) locations.

# Prep data
xx <- dd %>% 
  left_join(select(ff, Expt, MacroEnv), by = "Expt") %>% 
  select(Entry, Expt, MacroEnv, DTF, DTS, DTM)
# Create plotting function
ggCorPlot <- function(x, legend.title, colNums) {
  # Plot (a)
  r2 <- round(cor(x$DTF, x$DTS, use ="complete", method = "pearson")^2, 2)
  tp1 <- ggplot(x) + 
    geom_point(aes(x = DTF, y = DTS, color = Expt, shape = Expt), alpha = 0.8) + 
    geom_label(x = -Inf, y = Inf, hjust = 0, vjust = 1, parse = T,
               label = paste("italic(R)^2 == ", r2) ) +
    scale_color_manual(name = legend.title, values = colors_Expt[colNums]) +
    scale_shape_manual(name = legend.title, values = c(15,16,17,15,16,17)) +
    theme_AGL
  # Plot (b)
  r2 <- round(cor(x$DTF, x$DTM, use ="complete.obs", method = "pearson")^2, 2)
  tp2 <- ggplot(x) + 
    geom_point(aes(x = DTF, y = DTM, color = Expt, shape = Expt), alpha = 0.8) + 
    geom_label(x = -Inf, y = Inf, hjust = 0, vjust = 1, parse = T,
               label = paste("italic(R)^2 == ", r2) ) +
    scale_color_manual(name = legend.title, values = colors_Expt[colNums]) +
    scale_shape_manual(name = legend.title, values = c(15,16,17,15,16,17)) +
    theme_AGL
  # Plot (c)
  r2 <- round(cor(x$DTS, x$DTM, use = "complete", method = "pearson")^2, 2)
  tp3 <- ggplot(x) + 
    geom_point(aes(x = DTS, y = DTM, color = Expt, shape = Expt), alpha = 0.8) + 
    geom_label(x = -Inf, y = Inf, hjust = 0, vjust = 1, parse = T,
               label = paste("italic(R)^2 == ", r2) ) +
    scale_color_manual(name = legend.title, values = colors_Expt[colNums]) +
    scale_shape_manual(name = legend.title, values = c(15,16,17,15,16,17)) +
    theme_AGL
  # Append (a), (b) and (c)
  mp <- ggarrange(tp1, tp2, tp3, nrow = 1, ncol = 3, common.legend = T, legend = "right") 
  mp
}
# Plot
mp1 <- ggCorPlot(xx %>% filter(MacroEnv == "Temperate"),     "Temperate",      1:6 )
mp2 <- ggCorPlot(xx %>% filter(MacroEnv == "South Asia"),    "South Asia",     7:12)
mp3 <- ggCorPlot(xx %>% filter(MacroEnv == "Mediterranean"), "Mediterranean", 13:18)
mp <- ggarrange(mp1, mp2, mp3, nrow = 3, ncol = 1, common.legend = T, legend = "right")
ggsave("Supplemental_Figure_03.png", mp, width = 10, height = 8, dpi = 600)

Additional Figures: Correlations

# Prep data
xx <- dd %>% 
  left_join(select(ff, Expt, MacroEnv), by = "Expt") %>%
  mutate(DTE = ifelse(Location == "Cordoba, Spain", NA, DTE))
x1 <- xx %>% filter(MacroEnv == "Temperate")
x2 <- xx %>% filter(MacroEnv == "South Asia")
x3 <- xx %>% filter(MacroEnv == "Mediterranean")
# Create plotting functions
my_lower <- function(data, mapping, cols = colors_Expt, ...) {
  ggplot(data = data, mapping = mapping) +
    geom_point(alpha = 0.5, size = 0.3, aes(color = Expt)) +
    scale_color_manual(values = cols) +
    theme_bw() +
    theme(axis.text = element_text(size = 7.5))
}
my_middle <- function(data, mapping, cols = colors_Expt, ...) {
  ggplot(data = data, mapping = mapping) + 
    geom_density(alpha = 0.5) + 
    scale_color_manual(name = NULL, values = cols) +
    scale_fill_manual(name = NULL, values = cols) +
    guides(color = F, fill = guide_legend(nrow = 3, byrow = T)) +
    theme_bw() +
    theme(axis.text = element_text(size = 7.5))
}
# See: https://github.com/ggobi/ggally/issues/139
my_upper <- function(data, mapping, color = I("black"), sizeRange = c(1,5), ...) {
  # Prep data
  x <- eval_data_col(data, mapping$x) 
  y <- eval_data_col(data, mapping$y)
  #
  r2 <- cor(x, y, method = "pearson", use = "complete.obs")^2
  rt <- format(r2, digits = 2)[1]
  cex <- max(sizeRange)
  tt <- as.character(rt)
  # plot the cor value
  p <- ggally_text(label = tt, mapping = aes(), color = color, 
                   xP = 0.5, yP = 0.5, size = 6,  ... ) + theme_bw() 
  # Create color palette
  corColors <- RColorBrewer::brewer.pal(n = 10, name = "RdBu")[2:9]
  if        (r2 <= -0.9)              { corCol <- alpha(corColors[1], 0.5) 
  } else if (r2 >= -0.9 & r2 <= -0.6) { corCol <- alpha(corColors[2], 0.5)
  } else if (r2 >= -0.6 & r2 <= -0.3) { corCol <- alpha(corColors[3], 0.5)
  } else if (r2 >= -0.3 & r2 <= 0)    { corCol <- alpha(corColors[4], 0.5)
  } else if (r2 >= 0    & r2 <= 0.3)  { corCol <- alpha(corColors[5], 0.5) 
  } else if (r2 >= 0.3  & r2 <= 0.6)  { corCol <- alpha(corColors[6], 0.5)
  } else if (r2 >= 0.6  & r2 <= 0.9)  { corCol <- alpha(corColors[7], 0.5) 
  } else                              { corCol <- alpha(corColors[8], 0.5) }
  # Plot
  p <- p +
    theme(panel.background = element_rect(fill = corCol),
          panel.grid.major = element_blank(), 
          panel.grid.minor = element_blank())
  p
}
# Plot Correlations for each Expt
for(i in 1:length(names_Expt)) {
  mp <- ggpairs(xx %>% filter(Expt == names_Expt[i]), 
               columns = c("DTE", "DTF", "DTS", "DTM", "REP"), 
        upper  = list(continuous = my_upper), 
        diag   = list(continuous = my_middle),
        lower  = list(continuous = wrap(my_lower, cols = "black")),
        title  = names_Expt[i]) + 
    theme(strip.background = element_rect(fill = "White"))
  ggsave(paste0("Additional/Corr/Corr_", str_pad(i, 2, "left", "0"), 
                "_", names_ExptShort[i], ".png"), 
         mp, width = 6, height = 6, dpi = 600)
}
# Plot (a) Temperate
mp1 <- ggpairs(x1, columns = c("DTE", "DTF", "DTS", "DTM", "REP"), 
               aes(color = Expt, fill = Expt),
        upper=list(continuous = my_upper),
        diag =list(continuous = wrap(my_middle, cols = colors_Expt[1:6])),
        lower=list(continuous = wrap(my_lower,  cols = colors_Expt[1:6])),
        title = "(a) Temperate", 
        legend = c(2,2)) +
  theme(strip.background = element_rect(fill = "White"),
        legend.position = "bottom")
ggsave("Additional/Corr/Corr_Temperate.png", mp1, width = 6, height = 6, dpi = 600)
# Plot (b) South Asia
mp2 <- ggpairs(x2, columns = c("DTE", "DTF", "DTS", "DTM", "REP"), 
               aes(color = Expt, fill = Expt),
        upper  = list(continuous = my_upper),
        diag   = list(continuous = wrap(my_middle, cols = colors_Expt[7:12])),
        lower  = list(continuous = wrap(my_lower,  cols = colors_Expt[7:12])),
        title  = "(b) South Asia", 
        legend = c(2,2)) +
  theme(strip.background = element_rect(fill = "White"),
        legend.position = "bottom")
ggsave("Additional/Corr/Corr_SouthAsia.png", mp2, width = 6, height = 6, dpi = 600)
# Plot (c) Mediterranean
mp3 <- ggpairs(x3, columns = c("DTE", "DTF", "DTS", "DTM", "REP"), 
               aes(color = Expt, fill = Expt),
        upper  = list(continuous = my_upper),
        diag   = list(continuous = wrap(my_middle, cols = colors_Expt[13:18])),
        lower  = list(continuous = wrap(my_lower,  cols = colors_Expt[13:18])),
        title  = "(c) Mediterranean", 
        legend = c(2,2)) +
  theme(strip.background = element_rect(fill = "White"),
        legend.position = "bottom")
ggsave("Additional/Corr/Corr_Mediterranean.png", mp3, width = 6, height = 6, dpi = 600)
# Plot All
mp4 <- ggpairs(xx, columns = c("DTE", "DTF", "DTS", "DTM", "REP"), 
        aes(color = ExptShort, fill = ExptShort),
        upper  = list(continuous = my_upper), 
        diag   = list(continuous = my_middle),
        lower  = list(continuous = my_lower),
        title  = "ALL", 
        legend = c(2,2)) +
  theme(strip.background = element_rect(fill = "White"),
        legend.position = "bottom")
ggsave("Additional/Corr/Corr_All.png", mp4, width = 6, height = 6, dpi = 600)

PCA

Figure 3: PCA Clusters

Figure 3: Clustering of a lentil (Lens culinaris Medik.) diversity panel based days from sowing to flower (DTF). (a) Principal Component Analysis on DTF, scaled from 1-5, and hierarchical k-means clustering into eight groups. (b) Mean scaled DTF (1-5) for each cluster group across all field trials: Rosthern, Canada 2016 and 2017 (Ro16, Ro17), Sutherland, Canada 2016, 2017 and 2018 (Su16, Su17, Su18), Central Ferry, USA 2018 (Us18), Metaponto, Italy 2016 and 2017 (It16, It17), Marchouch, Morocco 2016 and 2017 (Mo16, Mo17), Cordoba, Spain 2016 and 2017 (Sp16, Sp17), Bhopal, India 2016 and 2017 (In16, In17), Jessore, Bangladesh 2016 and 2017 (Ba16, Ba17), Bardiya, Nepal 2016 and 2017 (Ne16, Ne17). Shaded areas represent one standard deviation from the mean. Dashed, vertical bars separate temperate, South Asian and Mediterranean macro-environments. (c) Composition of cluster groups in genotypes by country of origin. Pie size is relative to the number of genotypes originating from that country.

# Prep data
xx <- dd %>% 
  select(Entry, Expt, DTF2_scaled) %>% 
  spread(Expt, DTF2_scaled)
xx <- xx %>% column_to_rownames("Entry") %>% as.matrix()
# PCA
mypca <- PCA(xx, ncp = 10, graph = F)
# Heirarcical clustering
mypcaH <- HCPC(mypca, nb.clust = 8, graph = F)
perc <- round(mypca[[1]][,2], 1)
x1 <- mypcaH[[1]] %>% rownames_to_column("Entry")
x2 <- mypca[[3]]$coord %>% as.data.frame() %>% rownames_to_column("Entry")
pca <- left_join(x1, x2, by = "Entry") %>%
  mutate(Entry = as.numeric(Entry)) %>%
  left_join(select(ldp, Entry, Name, Origin), by = "Entry") %>%
  left_join(select(ct, Origin=Country, Region), by = "Origin") %>%
  select(Entry, Name, Origin, Region, Cluster=clust,
         PC1=Dim.1, PC2=Dim.2, PC3=Dim.3, PC4=Dim.4, PC5=Dim.5,
         PC6=Dim.6, PC7=Dim.7, PC8=Dim.8, PC9=Dim.9, PC10=Dim.10)
# Save data
write.csv(pca, "data/data_pca_results.csv", row.names = F)
# Prep data
x2 <- dd %>% 
  left_join(select(pca, Entry, Cluster), by = "Entry") %>%
  group_by(Expt, ExptShort, Cluster) %>% 
  summarise(mean = mean(DTF2_scaled, na.rm = T), 
            sd = sd(DTF2_scaled, na.rm = T)) %>%
  ungroup() %>%
  mutate(ClusterNum = plyr::mapvalues(Cluster, as.character(1:8), summary(pca$Cluster)))
x3 <- pca %>% 
  count(Cluster) %>% 
  mutate(Cluster = factor(Cluster, levels = rev(levels(Cluster))), y = n/2)
for(i in 2:nrow(x3)) { x3$y[i] <- sum(x3$n[1:(i-1)]) + (x3$n[i]/2) }
# Plot (a) PCA 1v2
find_hull <- function(df) df[chull(df[,"PC1"], df[,"PC2"]), ]
polys <- plyr::ddply(pca, "Cluster", find_hull) %>% mutate(Cluster = factor(Cluster))
mp1.1 <- ggplot(pca) +
  geom_polygon(data = polys, alpha = 0.15, aes(x = PC1, y = PC2, fill = Cluster)) +
  geom_point(aes(x = PC1, y = PC2, colour = Cluster)) +
  scale_fill_manual(values = colors) +
  scale_color_manual(values = colors) +
  theme_AGL + 
  theme(legend.position = "none", panel.grid = element_blank()) +
  labs(x = paste0("PC1 (", perc[1], "%)"),
       y = paste0("PC2 (", perc[2], "%)"))
# Plot (a) PCA 1v3
find_hull <- function(df) df[chull(df[,"PC1"], df[,"PC3"]), ]
polys <- plyr::ddply(pca, "Cluster", find_hull) %>% mutate(Cluster = factor(Cluster))
mp1.2 <- ggplot(pca) +
  geom_polygon(data = polys, alpha = 0.15, aes(x = PC1, y = PC3, fill = Cluster)) +
  geom_point(aes(x = PC1, y = PC3, colour = Cluster)) +
  scale_fill_manual(values = colors) +
  scale_color_manual(values = colors) +
  theme_AGL + 
  theme(legend.position = "none", panel.grid = element_blank()) +
  labs(x = paste0("PC1 (", perc[1], "%)"),
       y = paste0("PC3 (", perc[3], "%)"))
# Plot (a) PCA 2v3
find_hull <- function(df) df[chull(df[,"PC2"], df[,"PC3"]), ]
polys <- plyr::ddply(pca, "Cluster", find_hull) %>% mutate(Cluster = factor(Cluster))
mp1.3 <- ggplot(pca) +
  geom_polygon(data = polys, alpha = 0.15, aes(x = PC2, y = PC3, fill = Cluster)) +
  geom_point(aes(x = PC2, y = PC3, colour = Cluster)) +
  scale_fill_manual(values = colors) +
  scale_color_manual(values = colors) +
  theme_AGL + 
  theme(legend.position = "none", panel.grid = element_blank()) +
  labs(x = paste0("PC2 (", perc[2], "%)"),
       y = paste0("PC3 (", perc[3], "%)"))
# Append 
mp1 <- ggarrange(mp1.1, mp1.2, mp1.3, nrow = 1, ncol = 3, hjust = 0)
# Plot (b) DTF 
mp2 <- ggplot(x2, aes(x = ExptShort, y = mean, group = Cluster)) +
  geom_point(aes(color = Cluster)) + 
  geom_vline(xintercept = 6.5,  lty = 2) + 
  geom_vline(xintercept = 12.5, lty = 2) +
  geom_ribbon(aes(ymin = mean - sd, ymax = mean + sd, fill = Cluster), 
              alpha = 0.2, color = NA) + 
  geom_line(aes(color = Cluster), size = 1) +
  scale_color_manual(values = colors) +
  scale_fill_manual(values = colors) +
  coord_cartesian(ylim = c(0.95,5.05), expand = F) +
  theme_AGL +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        legend.position = "none", panel.grid = element_blank()) + 
  labs(y = "DTF (scaled 1-5)", x = NULL)
#
ggsave("Additional/Temp/Temp_F03_1.png", mp1, width = 8, height =   1*6/2.5, dpi = 600)
ggsave("Additional/Temp/Temp_F03_2.png", mp2, width = 8, height = 1.5*6/2.5, dpi = 600)
# Plot (c)
xx <- ldp %>% left_join(select(pca, Entry, Cluster), by = "Entry")
xx <- xx %>% 
  filter(!Origin %in% c("ICARDA","USDA","Unknown")) %>% 
  group_by(Origin, Cluster) %>% 
  summarise(Count = n()) %>% 
  spread(Cluster, Count) %>%
  left_join(select(ct, Origin=Country, Lat, Lon), by = "Origin") %>% 
  ungroup() %>% 
  as.data.frame()
xx[is.na(xx)] <- 0 
invisible(png("Additional/Temp/Temp_F03_3.png", width = 4800, height = 2200, res = 600))
par(mai = c(0,0,0,0), xaxs = "i", yaxs = "i")
mapPies(dF = xx, nameX = "Lon", nameY = "Lat", zColours = colors,
          nameZs = c("1","2","3","4","5","6","7","8"), lwd = 1,
          xlim = c(-140,110), ylim = c(0,20), addCatLegend = F,
          oceanCol = "grey90", landCol = "white", borderCol = "black") 
legend(-139.5, 15.5, title = "Cluster", legend = 1:8, col = colors,
       pch = 16, cex = 1, pt.cex = 2, box.lwd = 2)
invisible(dev.off())
# Append (a), (b) and (c)
im1 <- image_read("Additional/Temp/Temp_F03_1.png") %>% 
  image_annotate("(a)", size = 120, location = "+0+0")
im2 <- image_read("Additional/Temp/Temp_F03_2.png") %>% 
  image_annotate("(b)", size = 120, location = "+0+0")
im3 <- image_read("Additional/Temp/Temp_F03_3.png") %>%
  image_annotate("(c)", size = 120, location = "+0+0")
im <- image_append(c(im1, im2, im3), stack = T)
image_write(im, "Figure_03.png")

Additional Figure 5: PCA Plot

# Prep data
xx <- read.csv("data/data_pca_results.csv") %>% 
  mutate(Cluster = factor(Cluster), 
         PC2 = PC2*2.5, PC3 = PC3*2.5,
         myColors = plyr::mapvalues(Cluster, 1:8, colors))
# Plot png
mp <- ggplot(xx, aes(x = PC1, y = PC2, color = Cluster)) +
  scale_color_manual(values = colors) +
  geom_point() + 
  theme_AGL +
  theme(panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        axis.text = element_blank())
ggsave("Additional/Additional_Figure_05.png", mp, width = 6, height = 4, dpi = 600)
# Plot html
mp <- plot_ly(xx, x = ~PC1, y = ~PC2, z = ~PC3, 
              color = ~Cluster, colors = colors,
              text = ~paste(Entry, "|", Name, "\nOrigin:", Origin)) %>% 
  add_markers()
saveWidget(mp, file="Additional/Additional_Figure_05.html")
# Prep data
xx <- read.csv("data/data_pca_results.csv") %>% 
  mutate(Cluster = factor(Cluster), 
         PC2 = PC2*2.5, PC3 = PC3*2.5,
         myColors = plyr::mapvalues(Cluster, 1:8, colors))
# Create plotting function
ggPCA <- function(x = xx, i = 1) {
  # Plot
  par(mar=c(1.5, 2.5, 1.5, 0.5))
  scatter3D(x = x$PC1, y = x$PC3, z = x$PC2, pch = 16, cex = 0.75, 
    col = alpha(colors,0.8), colvar = as.numeric(x$Cluster), colkey = F,  
    col.grid = "gray90", bty = "u",
    theta = i, phi = 15,
    #ticktype = "detailed", cex.lab = 1, cex.axis = 0.5,
    xlab = "PC1", ylab = "PC3", zlab = "PC2", main = "LDP - DTF")
}
# Plot each angle
for (i in seq(0, 360, by = 2)) {
  png(paste0("Additional/PCA/PCA_", str_pad(i, 3, pad = "0"), ".png"), 
      width = 1000, height = 1000, res = 300) 
  ggPCA(xx, i)
  dev.off()
}
# Create animation
lf <- list.files("Additional/PCA")
mp <- image_read(paste0("Additional/PCA/", lf))
animation <- image_animate(mp, fps = 10)
image_write(animation, "Additional/Animation_PCA.gif")

Additional Figure 6: PCA by Region

# Prep data
levs <- c("Africa", "Asia", "Europe", "Americas", "ICARDA", "USDA")
xx <- read.csv("data/data_pca_results.csv") %>% 
  filter(Origin != "Unknown") %>%
  mutate(Cluster = factor(Cluster), 
         PC2 = PC2*2.5, PC3 = PC3*2.5,
         Origin = as.character(Origin),
         Region = as.character(Region), 
         Region = ifelse(Origin %in% levs[5:6], Origin, Region),
         Region = factor(Region, levels = levs))
# Plot png
mp <- ggplot(xx, aes(x = PC1, y = PC2, color = Region, shape = Region)) +
  geom_point(alpha = 0.7, size = 2) +
  scale_color_manual(values = colors[c(1,3,8,5,7,7)]) + 
  scale_shape_manual(values = c(16,18,15,17,13,10)) +
  theme_AGL + 
  theme(panel.grid.major.x = element_blank(),
        panel.grid.major.y = element_blank(),
        axis.text = element_blank())
ggsave("Additional/Additional_Figure_06.png", mp, width = 6, height = 4, dpi = 600)
# Plot html
mp <- plot_ly(xx, x = ~PC1, y = ~PC2, z = ~PC3, color = ~Region, 
              colors = colors[c(1,3,8,5,7,7)], 
              text = ~paste(Entry, "|", Name, "\nOrigin:", Origin,
                            "\nCluster:", Cluster)) %>%
  add_markers() 
saveWidget(mp, file="Additional/Additional_Figure_06.html")

Additional Figure 7: DTF By Cluster

# Prep data
x1 <- read.csv("data/data_pca_results.csv") %>% 
  mutate(Cluster = factor(Cluster))
x2 <- c("India", "Bangladesh", "Ethiopia", "Pakistan", 
        "Jordan", "Iran", "Turkey", "Syria", "Chile", 
        "Spain", "Czech Republic", "Canada" )
xx <- dd %>% 
  left_join(ldp, by = "Entry") %>%
  filter(ExptShort %in% c("Ro17", "Ba17", "Ne17", "It17"), Origin != "Unknown") %>% 
  left_join(select(x1, Entry, Cluster), by = "Entry") %>%
  mutate(Origin = factor(Origin, levels = unique(Origin)[rev(order(unique(Origin)))])) %>%
  filter(Origin %in% x2) %>%
  mutate(Origin = factor(Origin, levels = x2))
# Plot
mp <- ggplot(xx, aes(y = DTF2, x = Origin, group = Expt)) + 
  geom_quasirandom(aes(color = Cluster)) + 
  facet_grid(Location + Year ~ ., scales = "free_y") +
  scale_color_manual(values = colors) + 
  theme_AGL + 
  theme(legend.position = "top",
        panel.grid.major.x = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  guides(colour = guide_legend(nrow = 1, override.aes = list(size = 3))) +
  labs(y = "Days from sowing to flower")
ggsave("Additional/Additional_Figure_07.png", mp, width = 5, height = 7, dpi = 600)

Additional Figure 8: Cluster Origins

# Prep data
xx <- read.csv("data/data_pca_results.csv") %>% 
  mutate(Cluster = factor(Cluster))
xx <- ldp %>% 
  left_join(select(xx, Entry, Cluster), by = "Entry")
x1 <- xx %>% filter(Origin != "ICARDA") %>% 
  group_by(Origin, Cluster) %>% 
  summarise(Count = n()) %>% 
  spread(Cluster, Count) %>%
  left_join(select(ct, Origin=Country, Lat, Lon), by = "Origin") %>% 
  ungroup() %>% 
  as.data.frame()
x1[is.na(x1)] <- 0 
# Plot
mp <- ggplot(xx, aes(x = Origin, fill = Cluster)) + 
  geom_bar(stat = "count") + 
  facet_grid(. ~ Cluster, scales = "free", space = "free") + 
  scale_fill_manual(values = colors) +
  theme_AGL +
  theme(legend.position = "none",
        panel.grid.major.x = element_blank(),
        axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(y = "Count", x = NULL)
ggsave("Additional/Additional_Figure_08.png", width = 16, height = 4, dpi = 600)

Additional Figure 9: LDP Origins By Cluster

# Prep data
xx <- read.csv("data/data_pca_results.csv") %>% 
  mutate(Cluster = factor(Cluster))
xx <- ldp %>% 
  select(Entry, Name, Lat, Lon, Origin) %>% 
  left_join(select(xx, Entry, Cluster), by = "Entry") %>%
  left_join(select(ct, Origin=Country, cLat=Lat, cLon=Lon), by = "Origin") %>%
  mutate(Lat = ifelse(is.na(Lat), cLat, Lat),
         Lon = ifelse(is.na(Lon), cLon, Lon),
         Lat = ifelse(duplicated(Lat), jitter(Lat, 1, 1), Lat),
         Lon = ifelse(duplicated(Lon), jitter(Lon, 1, 1), Lon), 
         Size = 1)
# Plot png
invisible(png("Additional/Additional_Figure_09.png", 
              width = 7200, height = 4200, res = 600))
par(mai = c(0,0,0,0), xaxs = "i", yaxs = "i")
mapBubbles(dF = xx, nameX = "Lon", nameY = "Lat", nameZColour = "Cluster", 
           pch = 20, nameZSize = "Size", symbolSize = 0.5, 
           xlim = c(-140,110), ylim = c(0,20),
           colourPalette = colors[1:8], addColourLegend = F, addLegend = F,
           oceanCol = "grey90", landCol = "white", borderCol = "black")
legend(-139.5, 15.5, title = "Cluster", legend = 1:8, col = colors,
       pch = 16, cex = 1.75, pt.cex = 3, box.lwd = 2)
invisible(dev.off())
# Plot html
pal <- colorFactor(colors, domain = 1:8)
mp <- leaflet() %>% 
  addProviderTiles(providers$CartoDB.Positron) %>%
  addCircles(lng = xx$Lon, lat = xx$Lat, weight = 10,
                   color = pal(xx$Cluster), opacity = 1, fillOpacity = 1,
                   popup = paste(xx$Entry,"|",xx$Name,"\nCluster:",xx$Cluster)) %>%
  addLegend("bottomleft", pal = pal, values = xx$Cluster,
            title = "Cluster", opacity = 1)
saveWidget(mp, file="Additional/Additional_Figure_09.html")

Modeling DTF

Additional Figures: Entry Regressions

myfills <- alpha(c("darkgreen", "darkorange3", "darkblue"), 0.5)
mymin <- min(rr$RDTF, na.rm = T)
mymax <- max(rr$RDTF, na.rm = T)
mp <- list()
for(i in 1:324) {
  xx <- rr %>% 
    filter(Entry == i) %>%
    left_join(select(ff, Expt, MacroEnv, T_mean, P_mean), by = "Expt") %>%
    mutate(myfill = MacroEnv)
  x1 <- xx %>% filter(MacroEnv != "South Asia")
  x2 <- xx %>% filter(MacroEnv != "Temperate")
  x3 <- xx %>% filter(MacroEnv != "Mediterranean")
  figlab <- paste("Entry", str_pad(i, 3, "left", "0"), "|", unique(xx$Name))
  # Plot (a) 1/f = a + bT
  mp1 <- ggplot(xx, aes(x = T_mean, y = RDTF)) +
    geom_point(aes(shape = MacroEnv, color = MacroEnv)) +
    geom_smooth(data = x1, method = "lm", se = F, color = "black", lty = 3) +
    geom_smooth(data = x2, method = "lm", se = F, color = "black") +
    scale_y_continuous(sec.axis = dup_axis(~ 1/., name = NULL, breaks = c(35,50,100,150)),
                       trans = "reverse", breaks = c(0.01,0.02,0.03), limits = c(mymax, mymin)) +
    scale_x_continuous(breaks = c(11,13,15,17,19,21)) +
    scale_shape_manual(name = "Macro-environment", values = c(16,15,17)) +
    scale_color_manual(name = "Macro-environment", values = myfills) +
    theme_AGL + 
    labs(title = figlab, y = "1 / DTF", 
         x = expression(paste("Temperature (", degree, "C)", sep="")))
  # Plot (b) 1/f = a + cP
  mp2 <- ggplot(xx, aes(x = P_mean, y = RDTF)) +
    geom_point(aes(shape = MacroEnv, color = MacroEnv)) +
    geom_smooth(data = x1, method = "lm", se = F, color = "black", lty = 3) +
    geom_smooth(data = x3, method = "lm", se = F, color = "black") +
    scale_y_continuous(sec.axis = dup_axis(~ 1/., name="DTF", breaks = c(35,50,100,150)),
                       trans = "reverse", breaks = c(0.01,0.02,0.03), limits = c(mymax, mymin)) +
    scale_x_continuous(breaks = c(11,12,13,14,15,16)) +
    scale_shape_manual(name = "Macro-environment", values = c(16,15,17)) +
    scale_color_manual(name = "Macro-environment", values = myfills) +
    theme_AGL +
    labs(title = "", y = NULL,x = "Photoperiod (hours)")
  #
  mp[[i]] <- ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "bottom") 
  ggsave(paste0("Additional/Entry_TP/TP_Entry_", str_pad(i, 3, pad = "0"), ".png"), 
         mp[[i]], width = 8, height = 4, dpi = 600)
}
pdf("Additional/pdf_TP.pdf", width = 8, height = 4)
for(i in 1:324) { print(mp[[i]]) }
dev.off()


Additional Figures: PhotoThermal Plane

# Prep data
xx <- rr %>% 
  filter(!is.na(RDTF)) %>%
  left_join(select(ff, Expt, T_mean, P_mean, MacroEnv), by = "Expt")
# Create plotting function
ggPTplane <- function(x, i) {
  x1 <- x %>% filter(Entry == i)
  x <- x1$T_mean
  y <- x1$P_mean
  z <- x1$RDTF
  fit <- lm(z ~ x + y)
  # Create PhotoThermal plane
  fitp <- predict(fit)
  grid.lines <- 12
  x.p <- seq(min(x), max(x), length.out = grid.lines)
  y.p <- seq(min(y), max(y), length.out = grid.lines)
  xy <- expand.grid(x = x.p, y = y.p)
  z.p <- matrix(predict(fit, newdata = xy), nrow = grid.lines, ncol = grid.lines)
  pchs <- plyr::mapvalues(x1$Expt, names_Expt, c(rep(16,6), rep(15,6), rep(17,6))) %>%
    as.character() %>% as.numeric()
  # Plot with regression plane
  par(mar=c(1.5, 2.5, 1.5, 0.5))
  scatter3D(x, y, z, pch = pchs, cex = 2, main = unique(x1$Name),
    col = alpha(c("darkgreen", "darkorange3", "darkblue"),0.5),
    colvar = as.numeric(x1$MacroEnv), colkey = F, col.grid = "gray90", 
    bty = "u", theta = 40, phi = 25, ticktype = "detailed", 
    cex.lab = 1, cex.axis = 0.5, zlim = c(0.005,0.03),
    xlab = "Temperature", ylab = "Photoperiod", zlab = "1 / DTF", 
    surf = list(x = x.p, y = y.p, z = z.p, col = "black", facets = NA, fit = fitp) )
}
# Plot each Entry
for (i in 1:324) {
  png(paste0("Additional/Entry_3D/3D_Entry_", str_pad(i, 3, pad = "0"), ".png"), 
      width = 1000, height = 1000, res = 300) 
  ggPTplane(xx, i)
  dev.off()
}
# Create PDF
pdf("Additional/pdf_3D.pdf")
par(mar=c(1.5, 2.5, 1.5, 0.5))
for (i in 1:324) {
  ggPTplane(xx, i)
}
dev.off()
#
# Plot ILL 5888 & ILL 4400 & Laird
xx <- xx %>% mutate(Name = gsub(" AGL", "", Name))
for (i in c(235, 94, 128)) {
  png(paste0("Additional/Temp/3D_Entry_", str_pad(i, 3, pad = "0"), ".png"), 
      width = 2000, height = 2000, res = 600) 
  ggPTplane(xx, i)
  dev.off()
}
# Create animation
xx <- read.csv("data/model_t+p_coefs.csv") %>% arrange(b, c)
lf <- list.files("Additional/Entry_3D")[xx$Entry]
mp <- image_read(paste0("Additional/Entry_3D/", lf))
animation <- image_animate(mp, fps = 10)
image_write(animation, "Additional/Animation_3D.gif")

Supplemental Figure 4: Regressions

Figure S4: Effects of mean temperature and photoperiod on the rate of progress towards flowering (1 / DTF) in three contrasting selected genotypes. (a) Effect of temperature on 1 / DTF, (b) effect of photoperiod on 1 / DTF, and (c) effect of temperature and photoperiod on 1 / DTF modelled using equation 1. For (a) and (b), solid lines represent regressions among locations of relatively constant photoperiod or temperature, respectively, while dotted lines indicate a break in the assumption of constant photoperiod or temperature, respectively, across environments (see Figure 1). (d) Scaled DTF (1-5) of each genotype (grey lines) across all site-years with ILL5888, PI 420925 LSP and Laird highlighted according to their corresponding cluster group, 1, 5 and 8 respectively. ILL 5888 is an early maturing, genotype from Bangladesh. PI 420925 LSP is a landrace from Jordan with medium maturity. Laird is a late maturing, Canadian cultivar.

# Prep data
myfills <- alpha(c("darkgreen", "darkorange3", "darkblue"), 0.5)
yy <- c("ILL 5888 AGL", "PI 420925 LSP AGL",  "Laird AGL")
xx <- rr %>% 
  filter(Name %in% yy, !is.na(DTF)) %>%
  left_join(select(ff, Expt, MacroEnv, T_mean, P_mean), by = "Expt") %>%
  mutate(Name = gsub(" AGL", "", Name), myfill = MacroEnv,
         Name = factor(Name, levels = gsub(" AGL", "", yy)))
x1 <- xx %>% filter(MacroEnv != "South Asia")
x2 <- xx %>% filter(MacroEnv != "Temperate")
x3 <- xx %>% filter(MacroEnv != "Mediterranean")
# Plot (a) 1/f = a + bT
mp1 <- ggplot(xx, aes(x = T_mean, y = RDTF)) +
  geom_point(aes(shape = MacroEnv, color = MacroEnv)) +
  geom_smooth(data = x1, method = "lm", se = F, color = "black", lty = 3) +
  geom_smooth(data = x2, method = "lm", se = F, color = "black") +
  scale_y_continuous(trans = "reverse", breaks = c(0.01,0.02,0.03),
                     sec.axis = dup_axis(~ 1/., name = "DTF", breaks = c(35,50,100,150))) +
  scale_x_continuous(breaks = c(11,13,15,17,19,21)) +
  scale_shape_manual(name = "Macro-environment", values = c(16,15,17)) +
  scale_color_manual(name = "Macro-environment", values = myfills) +
  theme_AGL + facet_grid(. ~ Name) + 
  theme(axis.title.y = element_text(size = 9),
        plot.margin = unit(c(0,0,0,0), "cm")) +
  guides(colour = guide_legend(override.aes = list(size = 3))) +
  labs(y = "1 / DTF", x = expression(paste("Temperature (", degree, "C)", sep = "")))
# Plot (b) 1/f = a + cP
mp2 <- ggplot(xx, aes(x = P_mean, y = RDTF)) +
  geom_point(aes(shape = MacroEnv, color = MacroEnv)) +
  geom_smooth(data = x1, method = "lm", se = F, color = "black", lty = 3) +
  geom_smooth(data = x3, method = "lm", se = F, color = "black") +
  scale_y_continuous(trans = "reverse", breaks = c(0.01,0.02,0.03),
                     sec.axis = dup_axis(~ 1/., name="DTF", breaks = c(35,50,100,150))) +
  scale_x_continuous(breaks = c(11,12,13,14,15,16)) +
  scale_shape_manual(name = "Macro-environment", values = c(16,15,17)) +
  scale_color_manual(name = "Macro-environment", values = myfills) +
  theme_AGL + facet_grid(. ~ Name) + 
  theme(axis.title.y = element_text(size = 9),
        plot.margin = unit(c(0,0,0,0), "cm")) +
  guides(colour = guide_legend(override.aes = list(size = 3))) +
  labs(y = "1 / DTF",x = "Photoperiod (h)")
# Append (a) and (b)
mp <- ggarrange(mp1, mp2, ncol = 1, common.legend = T, legend = "bottom")
ggsave("Additional/Temp/Temp_SF04_1.png", mp, width = 6, height = 3.75, dpi = 600, bg = "white")
# Append (c)s
im1 <- image_read("Additional/Temp/3D_Entry_094.png")
im2 <- image_read("Additional/Temp/3D_Entry_235.png")
im3 <- image_read("Additional/Temp/3D_Entry_128.png")
im <- image_append(c(im1, im2, im3)) %>% image_scale("3600x")
image_write(im, "Additional/Temp/Temp_SF04_2.png")
# Prep data 
xx <- dd %>% 
  filter(Name %in% yy) %>% 
  mutate(Name = gsub(" AGL", "", Name),
         Name = factor(Name, levels = gsub(" AGL", "", yy)))
# Plot D)
mp3 <- ggplot(dd, aes(x = ExptShort, y = DTF2_scaled, group = Name)) + 
  geom_line(color = "black", alpha = 0.1) +
  geom_vline(xintercept = 6.5,  lty = 2) + 
  geom_vline(xintercept = 12.5, lty = 2) +
  geom_line(data = xx, aes(color = Name), size = 2) + 
  scale_color_manual(name = "Genotype", values = colors[c(1,5,8)]) +
  theme_AGL + labs(y = "DTF (scaled 1-5)", x = NULL) +
  theme(legend.position = "bottom", 
        legend.margin = unit(c(0,0,0,0), "cm"),
        plot.margin   = unit(c(0,0.2,0,0.5), "cm"),
        panel.grid   = element_blank(),
        axis.title.y = element_text(size = 9),
        axis.text.x  = element_text(angle = 45, hjust = 1))
ggsave("Additional/Temp/Temp_SF04_3.png", mp3, width = 6, height = 2.5, dpi = 600)
# Append (a), (b), C) and D)
im1 <- image_read("Additional/Temp/Temp_SF04_1.png") %>% 
  image_annotate("(a)", size = 100, location = "+0+0") %>% 
  image_annotate("(b)", size = 100, location = "+0+1000")
im2 <- image_read("Additional/Temp/Temp_SF04_2.png") %>% 
  image_annotate("(c)", size = 100)
im3 <- image_read("Additional/Temp/Temp_SF04_3.png") %>% 
  image_annotate("(d)", size = 100)
im <- image_append(c(im1, im2, im3), stack = T)
image_write(im, "Supplemental_Figure_04.png")

Modeling DTF - Functions

# Create functions
# Plot Observed vs Predicted
ggModel1 <- function(x, title = NULL, type = 1,
    mymin = min(c(x$DTF,x$Predicted_DTF)) - 2, 
    mymax = max(c(x$DTF,x$Predicted_DTF)) + 2 ) {
  x <- x %>% mutate(Flowered = ifelse(is.na(DTF), "Did not Flower", "Flowered"))
  # Prep data
  if(type == 1) {
    myx <- "DTF"; myy <- "Predicted_DTF"
    x <- x %>% filter(!is.na(DTF))
  }
  if(type == 2) {
    myx <- "RDTF"; myy <- "Predicted_RDTF"
    x <- x %>% filter(!is.na(RDTF))
  }
  myPal <- colors_Expt[names_Expt %in% unique(x$Expt)]
  r2 <- round(modelR2(x = x[,myx], y = x[,myy]), 3)
  # Plot
  mp <- ggplot(x) +
    geom_point(aes(x = get(myx), y = get(myy), color = Expt)) +
    geom_abline() +
    geom_label(x = mymin, y = mymax, hjust = 0, vjust = 1, parse = T,
               label = paste("italic(R)^2 == ", r2)) +
    scale_x_continuous(limits = c(mymin, mymax), expand = c(0, 0)) +
    scale_y_continuous(limits = c(mymin, mymax), expand = c(0, 0)) +
    scale_color_manual(name = NULL, values = myPal) +
    guides(colour = guide_legend(override.aes = list(size = 2))) +
    theme_AGL 
  if(type == 1) { 
    mp <- mp + labs(y = "Predicted DTF (days)", x = "Observed DTF (days)")
  }
  if(type == 2) { 
    mp <- mp + 
      scale_x_reverse(limits = c(mymax, mymin), expand = c(0, 0)) + 
      scale_y_reverse(limits = c(mymax, mymin), expand = c(0, 0)) +
      labs(y = "Predicted RDTF (1/days)", x = "Observed RDTF (1/days)")
  }
  if(!is.null(title)) { mp <- mp + labs(title = title) }
  mp
}
# Facets by Expt
ggModel2 <- function(x, myX = "DTF", myY = "Predicted_DTF", title = NULL,
                       x1 = 30, x2 = 30, y1 = 145, y2 = 120, legend.pos = "bottom") {
  # Prep data
  pca <- read.csv("data/data_pca_results.csv") %>% 
    select(Entry, Cluster) %>%
    mutate(Cluster = factor(Cluster))
  x <- x %>% 
    filter(!is.na(get(myX))) %>%
    left_join(pca, by = "Entry")
  xf <- x %>% 
    group_by(Expt) %>% 
    summarise(Mean = mean(DTF)) %>% 
    ungroup() %>%
    mutate(r2 = NULL, RMSE = NULL)
  for(i in 1:nrow(xf)) {
    xi <- x %>% filter(Expt == xf$Expt[i])
    xf[i,"r2"]   <- round(modelR2(x = xi[,myX],   y = xi[,myY]), 2)
    xf[i,"RMSE"] <- round(modelRMSE(x = xi[,myX], y = xi[,myY]), 1)
  }
  # Plot
  mp <- ggplot(x, aes(x = get(myX), y = get(myY))) +
    geom_point(aes(color = Cluster), size = 0.75, alpha = 0.7) + geom_abline() +
    geom_text(x = x1, y = y1, color = "black", hjust = 0, vjust = 0, size = 3,
              aes(label = paste("RMSE = ", RMSE, sep = "")), data = xf) +
    geom_text(x = x2, y = y2, color = "black", hjust = 0, vjust = 0, size = 3,
              aes(label = paste("italic(R)^2 == ", r2)), parse = T, data = xf) +
    facet_wrap(Expt ~ ., ncol = 6, labeller = label_wrap_gen(width = 17)) + 
    scale_x_continuous(limits = c(min(x[,myX]), max(x[,myX]))) +
    scale_y_continuous(limits = c(min(x[,myX]), max(x[,myX]))) +
    scale_color_manual(values = colors) +
    theme_AGL + 
    theme(axis.text.x = element_text(angle = 45, hjust = 1),
          legend.position = legend.pos, 
          legend.margin = unit(c(0,0,0,0), "cm"),
          panel.grid = element_blank()) +
    guides(colour = guide_legend(nrow = 1, override.aes = list(size = 3))) +
    labs(y = "Predicted DTF (days)", x = "Observed DTF (days)")
  if(!is.null(title)) { mp <- mp + labs(title = title) }
  mp
}
# R^2 function
modelR2 <- function(x, y) {
  1 - ( sum((x - y)^2, na.rm = T) / sum((x - mean(x, na.rm = T))^2, na.rm = T))
}
# RMSE function
modelRMSE <- function(x, y) {
  sqrt(sum((x-y)^2, na.rm = T) / length(x))
}

\(R^2=1-\frac{SS_{residuals}}{SS_{total}}=1-\frac{\sum (x-y)^2}{\sum (x-\bar{x})}\)

\(RMSE=\frac{\sum (y-x)^2}{n}\)


Modeling DTF (T + P) - All Site-years


###########################
# 1/f = a + bT + cP (All) #
###########################
# Prep data
xx <- rr %>% 
  filter(!is.na(RDTF)) %>%
  left_join(select(ff, Expt, T_mean, P_mean), by = "Expt") %>%
  select(Plot, Entry, Name, Rep, Expt, ExptShort, T_mean, P_mean, RDTF, DTF)
mr <- NULL
md <- NULL
mc <- ldp %>% select(Entry, Name) %>%
  mutate(a = NA, b = NA, c = NA, RR = NA, Environments = NA, aP = NA, bP = NA, cP = NA)
# Model
for(i in 1:324) {
  # Prep data
  xri <- xx %>% filter(Entry == i)
  xdi <- xri %>% 
    group_by(Entry, Name, Expt, ExptShort) %>% 
    summarise_at(vars(DTF, RDTF, T_mean, P_mean), funs(mean), na.rm = T) %>%
    ungroup()
  # Train Model
  mi <- lm(RDTF ~ T_mean + P_mean, data = xri)
  # Predict DTF
  xri <- xri %>% mutate(Predicted_RDTF = predict(mi),
                        Predicted_DTF = 1 / predict(mi))
  xdi <- xdi %>% mutate(Predicted_RDTF = predict(mi, newdata = xdi),
                        Predicted_DTF = 1 / predict(mi, newdata = xdi))
  # Save to table
  mr <- bind_rows(mr, xri) 
  md <- bind_rows(md, xdi)
  # Save coefficients
  mc[i,c("a","b","c")] <- mi$coefficients
  # Calculate rr and # of environments used
  mc[i,"RR"] <- 1 - sum((xri$DTF - xri$Predicted_DTF)^2, na.rm = T) / 
    sum((xri$Predicted_DTF - mean(xri$DTF, na.rm = T))^2, na.rm = T)
  mc[i,"Environments"] <- length(unique(xri$Expt[!is.na(xri$DTF)]))
  mc[i,"aP"] <- summary(mi)[[4]][1,4]
  mc[i,"bP"] <- summary(mi)[[4]][2,4]
  mc[i,"cP"] <- summary(mi)[[4]][3,4]
}
mr <- mr %>% mutate(Expt = factor(Expt, levels = names_Expt))
md <- md %>% mutate(Expt = factor(Expt, levels = names_Expt))
# Save Results
write.csv(mr, "data/model_t+p.csv",       row.names = F)
write.csv(md, "data/model_t+p_d.csv",     row.names = F)
write.csv(mc, "data/model_t+p_coefs.csv", row.names = F)
#
# Plot Each Entry
mp <- list()
for(i in 1:324) {
  mp1 <- ggModel1(mr %>% filter(Entry == i), paste("Entry", i, "| DTF"),
           mymin = min(c(mr$Predicted_DTF, mr$DTF), na.rm = T),
           mymax = max(c(mr$Predicted_DTF, mr$DTF), na.rm = T))
  mp2 <- ggModel1(mr %>% filter(Entry == i), paste("Entry", i, "| RDTF"), type = 2,
           mymin = min(c(mr$Predicted_RDTF, mr$RDTF)) - 0.001,
           mymax = max(c(mr$Predicted_RDTF, mr$RDTF)) + 0.001)
  mp[[i]] <- ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "right")
  fname <- paste0("Additional/entry_model/model_entry_", str_pad(i, 3, pad = "0"), ".png")
  ggsave(fname, mp[[i]], width = 10, height = 4.5, dpi = 600)
}
pdf("Additional/pdf_model.pdf", width = 10, height = 4.5)
for (i in 1:324) { print(mp[[i]]) }
dev.off()

# Prep data
xx <- read.csv("data/model_t+p_d.csv") %>% 
  mutate(Expt = factor(Expt, levels = names_Expt))
# Plot Observed vs Predicted
mp <- ggModel1(xx, title = "Model = T + P")
ggsave("Additional/Model/Model_1_1.png", mp, width = 7, height = 5, dpi = 600)

# Plot Observed vs Predicted
mp <- ggModel2(xx, title = "Model = T + P")
ggsave("Additional/Model/Model_2_1.png", mp, width = 8, height = 5.5, dpi = 600)

# Plot Observed vs Predicted for Temperate Locations
myexpts <- c("Ro16","Ro17","Su16","Su17","Su18","Us18")
mp <- ggModel2(xx %>% filter(ExptShort %in% myexpts))
ggsave("Additional/Model/Model_3_1.png", mp, width = 8, height = 3, dpi = 600)

Modeling DTF (T x P) - All Site-years

###########################
# 1/f = a + bT + cP (All) #
###########################
# Prep data
xx <- rr %>% 
  filter(!is.na(RDTF)) %>%
  left_join(select(ff, Expt, T_mean, P_mean), by = "Expt") %>%
  select(Plot, Entry, Name, Rep, Expt, ExptShort, T_mean, P_mean, RDTF, DTF)
mr <- NULL
md <- NULL
mc <- ldp %>% select(Entry, Name) %>%
  mutate(a = NA, b = NA, c = NA, d = NA, RR = NA, Environments = NA,
         aP = NA, bP = NA, cP= NA, dP = NA)
# Model
for(i in 1:324) {
  # Prep data
  xri <- xx %>% filter(Entry == i)
  xdi <- xri %>% 
    group_by(Entry, Name, Expt, ExptShort) %>% 
    summarise_at(vars(DTF, RDTF, T_mean, P_mean), funs(mean), na.rm = T) %>%
    ungroup()
  # Train Model
  mi <- lm(RDTF ~ T_mean * P_mean, data = xri)
  # Predict DTF
  xri <- xri %>% mutate(Predicted_RDTF = predict(mi),
                        Predicted_DTF = 1 / predict(mi))
  xdi <- xdi %>% mutate(Predicted_RDTF = predict(mi, newdata = xdi),
                        Predicted_DTF = 1 / predict(mi, newdata = xdi))
  # Save to table
  mr <- bind_rows(mr, xri) 
  md <- bind_rows(md, xdi)
  # Save coefficients
  mc[i,c("a","b","c","d")] <- mi$coefficients
  # Calculate rr and # of environments used
  mc[i,"RR"] <- 1 - sum((xri$DTF - xri$Predicted_DTF)^2, na.rm = T) / 
    sum((xri$Predicted_DTF - mean(xri$DTF, na.rm = T))^2, na.rm = T)
  mc[i,"Environments"] <- length(unique(xri$Expt[!is.na(xri$DTF)]))
  mc[i,"aP"] <- summary(mi)[[4]][1,4]
  mc[i,"bP"] <- summary(mi)[[4]][2,4]
  mc[i,"cP"] <- summary(mi)[[4]][3,4]
  mc[i,"dP"] <- summary(mi)[[4]][4,4]
}
mr <- mr %>% mutate(Expt = factor(Expt, levels = names_Expt))
md <- md %>% mutate(Expt = factor(Expt, levels = names_Expt))
# Save Results
write.csv(mr, "data/model_txp.csv",       row.names = F)
write.csv(md, "data/model_txp_d.csv",     row.names = F)
write.csv(mc, "data/model_txp_coefs.csv", row.names = F)

# Prep data
xx <- read.csv("data/model_txp_d.csv") %>% 
  mutate(Expt = factor(Expt, levels = names_Expt))
# Plot Observed vs Predicted
mp <- ggModel1(xx, title = "Model = T x P")
ggsave("Additional/Model/Model_1_2.png", mp, width = 7, height = 5, dpi = 600)

# Plot Observed vs Predicted
mp <- ggModel2(xx, title = "Model = T x P")
ggsave("Additional/Model/Model_2_2.png", mp, width = 8, height = 5.5, dpi = 600)

Supplemental Table 3: Model Constants

Table S3: Values of the constants derived from equations 1 and 2 using data from all site-years, for each of the genotypes used in this study.

# Prep data
x1 <- read.csv("data/model_t+p_coefs.csv")
x2 <- read.csv("data/model_txp_coefs.csv")
xx <- bind_rows(x1, x2) %>% 
  arrange(Entry) %>% 
  select(Entry, Name, a, b, c, d, RR, Environments, 
         a_p.value=aP, b_p.value=bP, c_p.value=cP, d_p.value=dP)
# Save
write.csv(xx, "Supplemental_Table_03.csv", na = "", row.names = F)

Additional Figure 10: significant T x P interactions

# Prep data
x1 <- read.csv("data/model_t+p_coefs.csv")
x2 <- read.csv("data/model_txp_coefs.csv")
xx <- bind_rows(x1, x2) %>% 
  arrange(Entry) %>% 
  select(Entry, Name, a, b, c, d, RR)
entries <- x2 %>% filter(dP < 0.05) %>% pull(Entry)
xx <- xx %>% filter(Entry %in% entries)
xx <- xx %>% 
  arrange(RR) %>% 
  mutate(Entry = factor(Entry, levels = unique(Entry)),
         Model = ifelse(is.na(d), "T + P", "T x P"))
# Plot
mp <- ggplot(xx, aes(x = Entry, y = RR, fill = Model)) + 
  geom_bar(stat = "identity", position = "dodge") +
  scale_y_continuous(breaks = seq(0,1,0.1), minor_breaks = seq(0,1,0.01)) +
  theme_AGL + 
  theme(legend.position = "top",
        axis.text.x = element_text(angle = 45, hjust = 1)) 
ggsave("Additional/Additional_Figure_10.png", mp, 
       width = 7, height = 5, dpi = 600)
#
length(entries)
[1] 30

Supplemental Figure 5: Model T + P vs. T x P

Figure S5: Comparison of observed and predicted values for days from sowing to flowering using (a) equation 1 and (b) equation 2.

# Prep data
xx <- read.csv("data/model_t+p_d.csv") %>% 
  mutate(Expt = factor(Expt, levels = names_Expt))
# Plot Observed vs Predicted
mp1 <- ggModel1(xx, title = expression(paste("(a) ", italic(" 1 / f = a + bT + cP"))))
# Prep data
xx <- read.csv("data/model_txp_d.csv") %>% 
  mutate(Expt = factor(Expt, levels = names_Expt))
# Plot Observed vs Predicted
mp2 <- ggModel1(xx, title = expression(paste("(b) ", italic(" 1 / f = a + bT + cP + dTP"))))
# Append
mp <- ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "right")
ggsave("Supplemental_Figure_05.png", mp, width = 12, height = 5, dpi = 600, bg = "white")

Additional Figure 11: Constants

# Prep data
pca <- read.csv("data/data_pca_results.csv")
x1 <- read.csv("data/model_t+p_coefs.csv") %>% mutate(Model = "T+P")
x2 <- read.csv("data/model_txp_coefs.csv") %>% mutate(Model = "TxP")
xx <- bind_rows(x1, x2) %>% 
  gather(Coef, Value, a, b, c, d) %>%
  left_join(pca, by = c("Entry","Name")) %>% 
  mutate(Cluster = factor(Cluster), Coef = factor(Coef))
# Plot
mp1 <- ggplot(xx %>% filter(Model=="T+P", !is.na(Value)), 
              aes(x = Cluster, y = Value * 10000, color = Cluster)) + 
  geom_quasirandom() + 
  theme_AGL +
  theme(strip.text.y = element_text(face = "italic")) +
  facet_grid(Coef ~ Model, scales = "free_y", drop = F) + 
  scale_color_manual(values = colors) + labs(y = "x 10,000")
mp2 <- ggplot(xx %>% filter(Model=="TxP"), 
              aes(x = Cluster, y = Value * 10000, color = Cluster)) + 
  geom_quasirandom() + 
  facet_grid(Coef ~ Model, scales = "free_y") + 
  theme_AGL +
  theme(strip.text.y = element_text(face = "italic"),
        panel.grid.major.x = element_blank()) +
  scale_color_manual(values = colors) + labs(y = "x 10,000")
mp <- ggarrange(mp1, mp2, ncol = 2, legend = "none")
ggsave("Additional/Additional_Figure_11.png", mp, width = 8, height = 5, dpi = 600)

Additional Figure 12: Coefficient p-values

# Prep data
pca <- read.csv("data/data_pca_results.csv") %>% mutate(Cluster = factor(Cluster))
x1 <- read.csv("data/model_t+p_coefs.csv") %>% mutate(Model = "T+P")
x2 <- read.csv("data/model_txp_coefs.csv") %>% mutate(Model = "TxP")
xx <- bind_rows(x1, x2) %>% 
  gather(Coef, Value, aP,bP,cP,dP) %>%
  left_join(pca, by = "Entry") %>%
  mutate(Cluster = factor(Cluster), Coef = factor(Coef))
# Plot
mp1 <- ggplot(xx %>% filter(Model=="T+P", !is.na(Value)), 
              aes(x = Cluster, y = Value, color = Cluster)) + 
  geom_quasirandom() + 
  facet_grid(Coef ~ Model, scales = "free_y", drop = F) + 
  scale_color_manual(values = colors) +
  theme_AGL +
  theme(strip.text.y = element_text(face = "italic"),
        panel.grid.major.x = element_blank())  +
  labs(y = expression(paste(italic("p"), " value")))
mp2 <- ggplot(xx%>%filter(Model=="TxP"), 
              aes(x = Cluster, y = Value, color = Cluster)) + 
  geom_quasirandom() + 
  facet_grid(Coef ~ Model, scales = "free_y") + 
  theme_AGL +
  theme(strip.text.y = element_text(face = "italic"),
        panel.grid.major.x = element_blank()) +
  scale_color_manual(values = colors) +
  labs(y = expression(paste(italic("p"), " value")))
mp <- ggarrange(mp1,mp2,ncol=2, legend = "none") 
ggsave("Additional/Additional_Figure_12.png", mp, width = 8, height = 5, dpi = 600)

Additional Figure 13: p-values b c

# Prep data
pca <- read.csv("data/data_pca_results.csv") %>% 
  mutate(Cluster = factor(Cluster))
xx <- read.csv("data/model_t+p_coefs.csv") %>% 
  mutate(Sig = factor(ifelse(bP > 0.0001, "Sig","Less Sig"))) %>%
  select(Entry, Sig, p.value=bP, b) %>% 
  gather(Trait, Value, p.value, b) %>%
  left_join(pca, by = "Entry")
x1 <- xx %>% filter(Sig == "Sig", Trait == "p.value")
# Plot (a)
mp1 <- ggplot(xx, aes(x = "", y = Value, group = "")) +
  geom_quasirandom(aes(color = Cluster)) +
  geom_point(data = x1, size = 2.5, pch = 25, 
             color = "black", fill = "darkblue") +
  geom_text_repel(data = x1, aes(label = Entry)) +
  facet_wrap(.~Trait, scales = "free_y") +
  scale_color_manual(values = colors) +
  guides(colour = guide_legend(nrow = 1, override.aes = list(size = 3))) +
  theme_AGL +
  theme(panel.grid.major.x = element_blank()) +
  labs(title = "(a)", x = NULL, y = NULL)
# Prep data
xx <- read.csv("data/model_t+p_coefs.csv") %>% 
  mutate(Sig = factor(ifelse(cP > 0.000001, "Sig","Less Sig"))) %>%
  select(Entry, Sig, p.value=cP, c) %>% 
  gather(Trait, Value, p.value, c) %>%
  left_join(pca, by = "Entry")
x1 <- xx %>% filter(Sig == "Sig")
# Plot B)
mp2 <- ggplot(xx, aes(x = "", y = Value, group = "")) +
  geom_quasirandom(aes(color = Cluster)) +
  geom_point(data = x1, size = 2.5, pch = 25, 
             color = "black", fill = "darkred") +
  geom_text_repel(data = x1 %>% filter(Trait =="p.value"), aes(label = Entry)) +
  facet_wrap(.~Trait, scales = "free_y") +
  scale_color_manual(values = colors) +
  guides(colour = guide_legend(nrow = 1, override.aes = list(size = 3))) +
  theme_AGL +
  theme(panel.grid.major.x = element_blank()) +
  labs(title = "(b)", x = NULL, y = NULL)
# Append (a) and (b)
mp <- ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "bottom")
ggsave("Additional/Additional_Figure_13.png", mp, width = 8, height = 4, dpi = 600, bg = "white")

Modeling DTF (T + P) - Location Out

Train the model without the location used for prediction