R Tutorial

An introduction to R


Introduction

This tutorial is will introduce the reader to , a free, open-source statistical computing environment often used with RStudio, a integrated development environment for .

R Project Logo


Calculator

can be used as a super awesome calculator

# 5 + 3 = 8
5 + 3 
## [1] 8
# 24 / (1 + 2) = 8
24 / (1 + 2) 
## [1] 8
# 2 * 2 * 2 = 8
2^3 
## [1] 8
# 8 * 8 = 64
sqrt(64) 
## [1] 8
# -log10(0.05 / 5000000) = 8
-log10(0.05 / 5000000) 
## [1] 8

Functions

has many useful built in functions

1:10
##  [1]  1  2  3  4  5  6  7  8  9 10
as.character(1:10)
##  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"
rep(1:2, times = 5)
##  [1] 1 2 1 2 1 2 1 2 1 2
rep(1:5, times = 2)
##  [1] 1 2 3 4 5 1 2 3 4 5
rep(1:5, each = 2)
##  [1] 1 1 2 2 3 3 4 4 5 5
rep(1:5, length.out = 7)
## [1] 1 2 3 4 5 1 2
seq(5, 50, by = 5)
##  [1]  5 10 15 20 25 30 35 40 45 50
seq(5, 50, length.out = 5)
## [1]  5.00 16.25 27.50 38.75 50.00
paste(1:10, 20:30, sep = "-")
##  [1] "1-20"  "2-21"  "3-22"  "4-23"  "5-24"  "6-25"  "7-26"  "8-27"  "9-28"  "10-29" "1-30"
paste(1:10, collapse = "-")
## [1] "1-2-3-4-5-6-7-8-9-10"
paste0("x", 1:10)
##  [1] "x1"  "x2"  "x3"  "x4"  "x5"  "x6"  "x7"  "x8"  "x9"  "x10"
min(1:10)
## [1] 1
max(1:10)
## [1] 10
range(1:10)
## [1]  1 10
mean(1:10)
## [1] 5.5
sd(1:10)
## [1] 3.02765

Custom Functions

Users can also create their own functions

customFunction1 <- function(x, y) {
  z <- 100 * x / (x + y)
  paste(z, "%")
}
customFunction1(x = 10, y = 90)
## [1] "10 %"
customFunction2 <- function(x) {
  mymin <- mean(x - sd(x))
  mymax <- mean(x) + sd(x)
  print(paste("Min =", mymin))
  print(paste("Max =", mymax))
}
customFunction2(x = 1:10)
## [1] "Min = 2.47234964590251"
## [1] "Max = 8.52765035409749"

for loops and if else statements

xx <- NULL #creates and empty object
for(i in 1:10) {
  xx[i] <- i*3
}
xx
##  [1]  3  6  9 12 15 18 21 24 27 30
xx %% 2 #gives the remainder when divided by 2
##  [1] 1 0 1 0 1 0 1 0 1 0
for(i in 1:length(xx)) {
  if((xx[i] %% 2) == 0) {
    print(paste(xx[i],"is Even"))
  } else { 
      print(paste(xx[i],"is Odd")) 
    }
}
## [1] "3 is Odd"
## [1] "6 is Even"
## [1] "9 is Odd"
## [1] "12 is Even"
## [1] "15 is Odd"
## [1] "18 is Even"
## [1] "21 is Odd"
## [1] "24 is Even"
## [1] "27 is Odd"
## [1] "30 is Even"
# or
ifelse(xx %% 2 == 0, "Even", "Odd")
##  [1] "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even"
paste(xx, ifelse(xx %% 2 == 0, "is Even", "is Odd"))
##  [1] "3 is Odd"   "6 is Even"  "9 is Odd"   "12 is Even" "15 is Odd"  "18 is Even" "21 is Odd"  "24 is Even" "27 is Odd"  "30 is Even"

Objects

Information can be stored in user defined objects, in multiple forms:

  • c(): a string of values
  • matrix(): a two dimensional matrix in one format
  • data.frame(): a two dimensional matrix where each column can be a different format
  • list():

A string…

xc <- 1:10
xc
##  [1]  1  2  3  4  5  6  7  8  9 10
xc <- c(1,2,3,4,5,6,7,8,9,10)
xc
##  [1]  1  2  3  4  5  6  7  8  9 10

A matrix…

xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = T)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1    2    3    4    5    6    7    8    9    10
##  [2,]   11   12   13   14   15   16   17   18   19    20
##  [3,]   21   22   23   24   25   26   27   28   29    30
##  [4,]   31   32   33   34   35   36   37   38   39    40
##  [5,]   41   42   43   44   45   46   47   48   49    50
##  [6,]   51   52   53   54   55   56   57   58   59    60
##  [7,]   61   62   63   64   65   66   67   68   69    70
##  [8,]   71   72   73   74   75   76   77   78   79    80
##  [9,]   81   82   83   84   85   86   87   88   89    90
## [10,]   91   92   93   94   95   96   97   98   99   100
xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = F)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100

A data frame…

xd <- data.frame(
  x1 = c("aa","bb","cc","dd","ee",
         "ff","gg","hh","ii","jj"),
  x2 = 1:10,
  x3 = c(1,1,1,1,1,2,2,2,3,3),
  x4 = rep(c(1,2), times = 5),
  x5 = rep(1:5, times = 2),
  x6 = rep(1:5, each = 2),
  x7 = seq(5, 50, by = 5),
  x8 = log10(1:10),
  x9 = (1:10)^3,
  x10 = c(T,T,T,F,F,T,T,F,F,F)
)
xd
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

A list…

xl <- list(xc, xm, xd)
xl[[1]]
##  [1]  1  2  3  4  5  6  7  8  9 10
xl[[2]]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100
xl[[3]]
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

Selecting Data

xc[5] # 5th element in xc
## [1] 5
xd$x3[5] # 5th element in col "x3"
## [1] 1
xd[5,"x3"] # row 5, col "x3"
## [1] 1
xd$x3 # all of col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[,"x3"] # all rows, col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[3,] # row 3, all cols
##   x1 x2 x3 x4 x5 x6 x7        x8 x9  x10
## 3 cc  3  1  1  3  2 15 0.4771213 27 TRUE
xd[c(2,4),c("x4","x5")] # rows 2 & 4, cols "x4" & "x5"
##   x4 x5
## 2  2  2
## 4  2  4
xl[[3]]$x1 # 3rd object in the list, col "x1
##  [1] "aa" "bb" "cc" "dd" "ee" "ff" "gg" "hh" "ii" "jj"

regexpr

xx <- data.frame(Name = c("Item 1 (detail 1)",
                          "Item 20 (detail 20)",
                          "Item 300 (detail 300)"),
                 Item = NA,
                 Detail = NA)
xx$Detail <- substr(xx$Name, regexpr("\\(", xx$Name)+1, regexpr("\\)", xx$Name)-1)
xx$Item <- substr(xx$Name, 1, regexpr("\\(", xx$Name)-2)
xx
##                    Name     Item     Detail
## 1     Item 1 (detail 1)   Item 1   detail 1
## 2   Item 20 (detail 20)  Item 20  detail 20
## 3 Item 300 (detail 300) Item 300 detail 300

Data Formats

Data can also be saved in many formats:

  • numeric
  • integer
  • character
  • factor
  • logical
xd$x3 <- as.character(xd$x3)
xd$x3
##  [1] "1" "1" "1" "1" "1" "2" "2" "2" "3" "3"
xd$x3 <- as.numeric(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
xd$x3 <- as.factor(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 1 2 3
xd$x3 <- factor(xd$x3, levels = c("3","2","1"))
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 3 2 1
xd$x10
##  [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
as.numeric(xd$x10) # TRUE = 1, FALSE = 0
##  [1] 1 1 1 0 0 1 1 0 0 0
sum(xd$x10)
## [1] 5

Internal structure of an object can be checked with str()

str(xc) # c()
##  num [1:10] 1 2 3 4 5 6 7 8 9 10
str(xm) # matrix()
##  int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
str(xd) # data.frame()
## 'data.frame':    10 obs. of  10 variables:
##  $ x1 : chr  "aa" "bb" "cc" "dd" ...
##  $ x2 : int  1 2 3 4 5 6 7 8 9 10
##  $ x3 : Factor w/ 3 levels "3","2","1": 3 3 3 3 3 2 2 2 1 1
##  $ x4 : num  1 2 1 2 1 2 1 2 1 2
##  $ x5 : int  1 2 3 4 5 1 2 3 4 5
##  $ x6 : int  1 1 2 2 3 3 4 4 5 5
##  $ x7 : num  5 10 15 20 25 30 35 40 45 50
##  $ x8 : num  0 0.301 0.477 0.602 0.699 ...
##  $ x9 : num  1 8 27 64 125 216 343 512 729 1000
##  $ x10: logi  TRUE TRUE TRUE FALSE FALSE TRUE ...
str(xl) # list()
## List of 3
##  $ : num [1:10] 1 2 3 4 5 6 7 8 9 10
##  $ : int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
##  $ :'data.frame':    10 obs. of  10 variables:
##   ..$ x1 : chr [1:10] "aa" "bb" "cc" "dd" ...
##   ..$ x2 : int [1:10] 1 2 3 4 5 6 7 8 9 10
##   ..$ x3 : num [1:10] 1 1 1 1 1 2 2 2 3 3
##   ..$ x4 : num [1:10] 1 2 1 2 1 2 1 2 1 2
##   ..$ x5 : int [1:10] 1 2 3 4 5 1 2 3 4 5
##   ..$ x6 : int [1:10] 1 1 2 2 3 3 4 4 5 5
##   ..$ x7 : num [1:10] 5 10 15 20 25 30 35 40 45 50
##   ..$ x8 : num [1:10] 0 0.301 0.477 0.602 0.699 ...
##   ..$ x9 : num [1:10] 1 8 27 64 125 216 343 512 729 1000
##   ..$ x10: logi [1:10] TRUE TRUE TRUE FALSE FALSE TRUE ...

Packages

Additional libraries can be installed and loaded for use.

install.packages("scales")
library(scales)
xx <- data.frame(Values = 1:10)
xx$Rescaled <- rescale(x = xx$Values, to = c(1,30))
xx
##    Values  Rescaled
## 1       1  1.000000
## 2       2  4.222222
## 3       3  7.444444
## 4       4 10.666667
## 5       5 13.888889
## 6       6 17.111111
## 7       7 20.333333
## 8       8 23.555556
## 9       9 26.777778
## 10     10 30.000000

libraries can also be used without having to load them

scales::rescale(1:10, to = c(1,30))
##  [1]  1.000000  4.222222  7.444444 10.666667 13.888889 17.111111 20.333333 23.555556 26.777778 30.000000

Data Wrangling

R for Data Science - https://r4ds.had.co.nz/

xx <- data.frame(Group = c("X","X","Y","Y","Y","X","X","X","Y","Y"),
                 Data1 = 1:10, 
                 Data2 = seq(10, 100, by = 10))
xx$NewData1 <- xx$Data1 + xx$Data2
xx$NewData2 <- xx$Data1 * 1000
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      X     6    60       66     6000
## 7      X     7    70       77     7000
## 8      X     8    80       88     8000
## 9      Y     9    90       99     9000
## 10     Y    10   100      110    10000
xx$Data1 < 5 # which are less than 5
##  [1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
xx[xx$Data1 < 5,]
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx[xx$Group == "X", c("Group","Data2","NewData1")]
##   Group Data2 NewData1
## 1     X    10       11
## 2     X    20       22
## 6     X    60       66
## 7     X    70       77
## 8     X    80       88

Data wrangling with tidyverse and pipes (%>%)

library(tidyverse) # install.packages("tidyverse")
xx <- data.frame(Group = c("X","X","Y","Y","Y","Y","Y","X","X","X")) %>%
  mutate(Data1 = 1:10, 
         Data2 = seq(10, 100, by = 10),
         NewData1 = Data1 + Data2,
         NewData2 = Data1 * 1000)
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      Y     6    60       66     6000
## 7      Y     7    70       77     7000
## 8      X     8    80       88     8000
## 9      X     9    90       99     9000
## 10     X    10   100      110    10000
filter(xx, Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Group == "X") %>% 
  select(Group, NewColName=Data2, NewData1)
##   Group NewColName NewData1
## 1     X         10       11
## 2     X         20       22
## 3     X         80       88
## 4     X         90       99
## 5     X        100      110
xs <- xx %>% 
  group_by(Group) %>% 
  summarise(Data2_mean = mean(Data2),
            Data2_sd = sd(Data2),
            NewData2_mean = mean(NewData2),
            NewData2_sd = sd(NewData2))
xs
## # A tibble: 2 × 5
##   Group Data2_mean Data2_sd NewData2_mean NewData2_sd
##   <chr>      <dbl>    <dbl>         <dbl>       <dbl>
## 1 X             60     41.8          6000       4183.
## 2 Y             50     15.8          5000       1581.
xx %>% left_join(xs, by = "Group")
##    Group Data1 Data2 NewData1 NewData2 Data2_mean Data2_sd NewData2_mean NewData2_sd
## 1      X     1    10       11     1000         60 41.83300          6000    4183.300
## 2      X     2    20       22     2000         60 41.83300          6000    4183.300
## 3      Y     3    30       33     3000         50 15.81139          5000    1581.139
## 4      Y     4    40       44     4000         50 15.81139          5000    1581.139
## 5      Y     5    50       55     5000         50 15.81139          5000    1581.139
## 6      Y     6    60       66     6000         50 15.81139          5000    1581.139
## 7      Y     7    70       77     7000         50 15.81139          5000    1581.139
## 8      X     8    80       88     8000         60 41.83300          6000    4183.300
## 9      X     9    90       99     9000         60 41.83300          6000    4183.300
## 10     X    10   100      110    10000         60 41.83300          6000    4183.300

Read/Write data

xx <- read.csv("data_r_tutorial.csv")
write.csv(xx, "data_r_tutorial.csv", row.names = F)

For excel sheets, the package readxl can be used to read in sheets of data.

library(readxl) # install.packages("readxl")
xx <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data")

Tidy Data

yy <- xx %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = round(mean(DTF),1)) %>% 
  arrange(Location)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          Location            Mean_DTF
##   <chr>         <chr>                  <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh     86.7
## 2 ILL 618 AGL   Jessore, Bangladesh     79.3
## 3 Laird AGL     Jessore, Bangladesh     76.8
## 4 CDC Maxim AGL Metaponto, Italy       134. 
## 5 ILL 618 AGL   Metaponto, Italy       138. 
## 6 Laird AGL     Metaponto, Italy       137. 
## 7 CDC Maxim AGL Saskatoon, Canada       52.5
## 8 ILL 618 AGL   Saskatoon, Canada       47  
## 9 Laird AGL     Saskatoon, Canada       56.8
yy <- yy %>% spread(key = Location, value = Mean_DTF)
yy
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Jessore, Bangladesh` `Metaponto, Italy` `Saskatoon, Canada`
##   <chr>                         <dbl>              <dbl>               <dbl>
## 1 CDC Maxim AGL                  86.7               134.                52.5
## 2 ILL 618 AGL                    79.3               138.                47  
## 3 Laird AGL                      76.8               137.                56.8
yy <- yy %>% gather(key = TraitName, value = Value, 2:4)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          TraitName           Value
##   <chr>         <chr>               <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh  86.7
## 2 ILL 618 AGL   Jessore, Bangladesh  79.3
## 3 Laird AGL     Jessore, Bangladesh  76.8
## 4 CDC Maxim AGL Metaponto, Italy    134. 
## 5 ILL 618 AGL   Metaponto, Italy    138. 
## 6 Laird AGL     Metaponto, Italy    137. 
## 7 CDC Maxim AGL Saskatoon, Canada    52.5
## 8 ILL 618 AGL   Saskatoon, Canada    47  
## 9 Laird AGL     Saskatoon, Canada    56.8
yy <- yy %>% spread(key = Name, value = Value)
yy
## # A tibble: 3 × 4
##   TraitName           `CDC Maxim AGL` `ILL 618 AGL` `Laird AGL`
##   <chr>                         <dbl>         <dbl>       <dbl>
## 1 Jessore, Bangladesh            86.7          79.3        76.8
## 2 Metaponto, Italy              134.          138.        137. 
## 3 Saskatoon, Canada              52.5          47          56.8

Base Plotting

We will start with some basic plotting using the base function plot()

# A basic scatter plot
plot(x = xd$x8, y = xd$x9)

# Adjust color and shape of the points
plot(x = xd$x8, y = xd$x9, col = "darkred", pch = 0)

plot(x = xd$x8, y = xd$x9, col = xd$x4, pch = xd$x4)

# Adjust plot type 
plot(x = xd$x8, y = xd$x9, type = "line")

# Adjust linetype
plot(x = xd$x8, y = xd$x9, type = "line", lty = 2)

# Plot lines and points
plot(x = xd$x8, y = xd$x9, type = "both")

Now lets create some random and normally distributed data to make some more complicated plots

# 100 random uniformly distributed numbers ranging from 0 - 100
ru <- runif(100, min = 0, max = 100)
ru
##   [1] 36.713370 12.708927 64.593882 60.016758  6.018877 22.514402 14.497875 80.617892 30.089694 29.445550 69.021319 94.508453 99.166544
##  [14] 99.718593 31.955360 84.382868 78.771562 76.975368  8.563842 89.050655 44.322733 43.907508 47.126816  6.773618  2.366291 38.850588
##  [27] 21.292387 54.753323 26.024200 40.746421  6.273575 12.405929 90.074422 20.024734 66.412224 78.574282 69.218055 25.282017 92.036508
##  [40] 28.835408 52.141443 74.808394 27.674051 25.454106 20.340752 30.569162  9.996933 34.195606 26.219619 21.641569 46.115057 59.185439
##  [53]  1.687442 77.523809 15.539648 47.961384 84.037762 80.855153 12.256730 59.690272  4.600601 90.210478 10.655451 94.972127 23.624386
##  [66] 60.882676 98.253052 82.754852 60.145701 67.211364 63.927229 74.540320  5.001009  5.839298 34.838936 99.802504 62.968561 83.655646
##  [79] 60.450237 16.712156 66.580458 26.312234 98.031754 17.886389 50.148150  8.315372 91.181195 94.594669 36.671397 41.898868  7.594261
##  [92] 38.975553 90.224314 11.174149 20.461812 86.055434 47.274666 86.911898 46.977524 37.380648
plot(x = ru)

order(ru)
##   [1]  53  25  61  73  74   5  31  24  91  86  19  47  63  94  59  32   2   7  55  80  84  34  45  95  27  50   6  65  38  44  29  49
##  [33]  82  43  40  10   9  46  15  48  75  89   1 100  26  92  30  90  22  21  51  99  23  97  56  85  41  28  52  60   4  69  79  66
##  [65]  77  71   3  35  81  70  11  37  72  42  18  54  36  17   8  58  68  78  57  16  96  98  20  33  62  93  87  39  12  88  64  83
##  [97]  67  13  14  76
ru<- ru[order(ru)]
ru
##   [1]  1.687442  2.366291  4.600601  5.001009  5.839298  6.018877  6.273575  6.773618  7.594261  8.315372  8.563842  9.996933 10.655451
##  [14] 11.174149 12.256730 12.405929 12.708927 14.497875 15.539648 16.712156 17.886389 20.024734 20.340752 20.461812 21.292387 21.641569
##  [27] 22.514402 23.624386 25.282017 25.454106 26.024200 26.219619 26.312234 27.674051 28.835408 29.445550 30.089694 30.569162 31.955360
##  [40] 34.195606 34.838936 36.671397 36.713370 37.380648 38.850588 38.975553 40.746421 41.898868 43.907508 44.322733 46.115057 46.977524
##  [53] 47.126816 47.274666 47.961384 50.148150 52.141443 54.753323 59.185439 59.690272 60.016758 60.145701 60.450237 60.882676 62.968561
##  [66] 63.927229 64.593882 66.412224 66.580458 67.211364 69.021319 69.218055 74.540320 74.808394 76.975368 77.523809 78.574282 78.771562
##  [79] 80.617892 80.855153 82.754852 83.655646 84.037762 84.382868 86.055434 86.911898 89.050655 90.074422 90.210478 90.224314 91.181195
##  [92] 92.036508 94.508453 94.594669 94.972127 98.031754 98.253052 99.166544 99.718593 99.802504
plot(x = ru)

# 100 normally distributed numbers with a mean of 50 and sd of 10
nd <- rnorm(100, mean = 50, sd = 10)
nd
##   [1] 44.91661 63.67980 57.50962 51.83689 49.25579 59.71923 32.27452 74.30934 46.98457 58.74374 47.92591 43.07540 47.31120 51.73675
##  [15] 48.86188 46.98587 21.56761 58.86579 41.03213 51.47155 42.92441 48.08652 35.86348 47.11022 45.11191 47.14221 72.79779 48.74447
##  [29] 34.86390 50.81252 53.89033 58.79210 50.25232 32.12140 57.68880 41.17402 39.36577 53.45131 57.25047 42.95447 53.82031 44.03344
##  [43] 49.99686 48.66700 49.91018 47.46088 58.73114 41.44890 59.52578 49.05605 48.27219 54.24526 52.44277 49.61997 69.05433 62.92324
##  [57] 36.08792 41.68678 48.46883 42.87258 40.43297 38.95474 49.58654 63.82488 47.80932 52.46844 40.29214 48.79846 57.69669 49.46121
##  [71] 51.99955 45.34316 43.00138 47.56617 52.19814 47.57256 55.95786 44.38301 40.17620 41.70377 49.28846 49.50620 39.26434 69.55933
##  [85] 52.03961 53.93256 57.82432 58.23487 30.02380 61.37119 63.68746 79.19164 57.48677 57.30516 53.05346 60.22641 50.07753 50.00611
##  [99] 56.43118 41.15529
nd <- nd[order(nd)]
nd
##   [1] 21.56761 30.02380 32.12140 32.27452 34.86390 35.86348 36.08792 38.95474 39.26434 39.36577 40.17620 40.29214 40.43297 41.03213
##  [15] 41.15529 41.17402 41.44890 41.68678 41.70377 42.87258 42.92441 42.95447 43.00138 43.07540 44.03344 44.38301 44.91661 45.11191
##  [29] 45.34316 46.98457 46.98587 47.11022 47.14221 47.31120 47.46088 47.56617 47.57256 47.80932 47.92591 48.08652 48.27219 48.46883
##  [43] 48.66700 48.74447 48.79846 48.86188 49.05605 49.25579 49.28846 49.46121 49.50620 49.58654 49.61997 49.91018 49.99686 50.00611
##  [57] 50.07753 50.25232 50.81252 51.47155 51.73675 51.83689 51.99955 52.03961 52.19814 52.44277 52.46844 53.05346 53.45131 53.82031
##  [71] 53.89033 53.93256 54.24526 55.95786 56.43118 57.25047 57.30516 57.48677 57.50962 57.68880 57.69669 57.82432 58.23487 58.73114
##  [85] 58.74374 58.79210 58.86579 59.52578 59.71923 60.22641 61.37119 62.92324 63.67980 63.68746 63.82488 69.05433 69.55933 72.79779
##  [99] 74.30934 79.19164
plot(x = nd)

hist(x = nd)

hist(nd, breaks = 20, col = "darkgreen")

plot(x = density(nd))

boxplot(x = nd)

boxplot(x = nd, horizontal = T)


ggplot2

Lets be honest, the base plots are ugly! The ggplot2 package gives the user to create a better, more visually appealing plots. Additional packages such as ggbeeswarm and ggrepel also contain useful functions to add to the functionality of ggplot2.

library(ggplot2)
mp <- ggplot(xd, aes(x = x8, y = x9))
mp + geom_point()

mp + geom_point(aes(color = x3, shape = x3), size = 4)

mp + geom_line(size = 2)

mp + geom_line(aes(color = x3), size = 2)

mp + geom_smooth(method = "loess")

mp + geom_smooth(method = "lm")

xx <- data.frame(data = c(rnorm(50, mean = 40, sd = 10),
                          rnorm(50, mean = 60, sd = 5)),
                 group = factor(rep(1:2, each = 50)),
                 label = c("Label1", rep(NA, 49), "Label2", rep(NA, 49)))
mp <- ggplot(xx, aes(x = data, fill = group))
mp + geom_histogram(color = "black")

mp + geom_histogram(color = "black", position = "dodge")

mp1 <- mp + geom_histogram(color = "black") + facet_grid(group~.)
mp1

mp + geom_density(alpha = 0.5)

mp <- ggplot(xx, aes(x = group, y = data, fill = group))
mp + geom_boxplot(color = "black")

mp + geom_boxplot() + geom_point()

mp + geom_violin() + geom_boxplot(width = 0.1, fill = "white")

library(ggbeeswarm)
mp + geom_quasirandom()

mp + geom_quasirandom(aes(shape = group))

mp2 <- mp + geom_violin() + 
  geom_boxplot(width = 0.1, fill = "white") +
  geom_beeswarm(alpha = 0.5)
library(ggrepel)
mp2 + geom_text_repel(aes(label = label), nudge_x = 0.4)

library(ggpubr)
ggarrange(mp1, mp2, ncol = 2, widths = c(2,1),
          common.legend = T, legend = "bottom")


Statistics

# Prep data
lev_Loc  <- c("Saskatoon, Canada", "Jessore, Bangladesh", "Metaponto, Italy")
lev_Name <- c("ILL 618 AGL", "CDC Maxim AGL", "Laird AGL")
dd <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data") %>%
  mutate(Location = factor(Location, levels = lev_Loc),
         Name = factor(Name, levels = lev_Name))
xx <- dd %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = mean(DTF))
xx %>% spread(Location, Mean_DTF)
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Saskatoon, Canada` `Jessore, Bangladesh` `Metaponto, Italy`
##   <fct>                       <dbl>                 <dbl>              <dbl>
## 1 ILL 618 AGL                  47                    79.3               138.
## 2 CDC Maxim AGL                52.5                  86.7               134.
## 3 Laird AGL                    56.8                  76.8               137.
# Plot
mp1 <- ggplot(dd, aes(x = Location, y = DTF, color = Name, shape = Name)) +
  geom_point(size = 2, alpha = 0.7, position = position_dodge(width=0.5))
mp2 <- ggplot(xx, aes(x = Location, y = Mean_DTF, 
                      color = Name, group = Name, shape = Name)) +
  geom_point(size = 2.5, alpha = 0.7) + 
  geom_line(size = 1, alpha = 0.7) +
  theme(legend.position = "top")
ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "top")

From first glace, it is clear there are differences between genotypes, locations, and genotype x environment (GxE) interactions. Now let’s do a few statistical tests.

summary(aov(DTF ~ Name * Location, data = dd))
##               Df Sum Sq Mean Sq  F value   Pr(>F)    
## Name           2     88      44    3.476   0.0395 *  
## Location       2  65863   32931 2598.336  < 2e-16 ***
## Name:Location  4    560     140   11.044 2.52e-06 ***
## Residuals     45    570      13                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected, an ANOVA shows statistical significance for genotype (p-value = 0.0395), Location (p-value < 2e-16) and GxE interactions (p-value < 2.52e-06). However, all this tells us is that one genotype is different from the rest, one location is different from the others and that there is GxE interactions. If we want to be more specific, would need to do some multiple comparison tests.

If we only have two things to compare, we could do a t-test.

xx <- dd %>% 
  filter(Location %in% c("Saskatoon, Canada", "Jessore, Bangladesh")) %>%
  spread(Location, DTF)
t.test(x = xx$`Saskatoon, Canada`, y = xx$`Jessore, Bangladesh`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`Saskatoon, Canada` and xx$`Jessore, Bangladesh`
## t = -17.521, df = 32.701, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -32.18265 -25.48402
## sample estimates:
## mean of x mean of y 
##  52.11111  80.94444

DTF in Saskatoon, Canada is significantly different (p-value < 2.2e-16) from DTF in Jessore, Bangladesh.

xx <- dd %>% 
  filter(Name %in% c("ILL 618 AGL", "Laird AGL"),
         Location == "Metaponto, Italy") %>%
  spread(Name, DTF)
t.test(x = xx$`ILL 618 AGL`, y = xx$`Laird AGL`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`ILL 618 AGL` and xx$`Laird AGL`
## t = 0.38008, df = 8.0564, p-value = 0.7137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.059739  7.059739
## sample estimates:
## mean of x mean of y 
##  137.8333  136.8333

DTF between ILL 618 AGL and Laird AGL are not significantly different (p-value = 0.7137) in Metaponto, Italy.


pch Plot

xx <- data.frame(x = rep(1:6, times = 5, length.out = 26),
                 y = rep(5:1, each = 6, length.out = 26),
                 pch = 0:25)
mp <- ggplot(xx, aes(x = x, y = y, shape = as.factor(pch))) +
  geom_point(color = "darkred", fill = "darkblue", size = 5) +
  geom_text(aes(label = pch), nudge_x = -0.25) +
  scale_shape_manual(values = xx$pch) +
  scale_x_continuous(breaks = 6:1) +
  scale_y_continuous(breaks = 6:1) +
  theme_void() +
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  labs(title = "Plot symbols in R (pch)",
       subtitle = "color = \"darkred\", fill = \"darkblue\"",
       x = NULL, y = NULL)
ggsave("pch.png", mp, width = 4.5, height = 3, bg = "white")


R Markdown

Tutorials on how to create an R markdown document like this one can be found here:


© Derek Michael Wright