dblogr/

R Tutorial

An introduction to R


Introduction

This tutorial is will introduce the reader to , a free, open-source statistical computing environment often used with RStudio, a integrated development environment for .

R Project Logo
R Project Logo

Calculator

can be used as a super awesome calculator

# 5 + 3 = 8
5 + 3 
## [1] 8
# 24 / (1 + 2) = 8
24 / (1 + 2) 
## [1] 8
# 2 * 2 * 2 = 8
2^3 
## [1] 8
# 8 * 8 = 64
sqrt(64) 
## [1] 8
# -log10(0.05 / 5000000) = 8
-log10(0.05 / 5000000) 
## [1] 8

Functions

has many useful built in functions

1:10
##  [1]  1  2  3  4  5  6  7  8  9 10
as.character(1:10)
##  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"
rep(1:2, times = 5)
##  [1] 1 2 1 2 1 2 1 2 1 2
rep(1:5, times = 2)
##  [1] 1 2 3 4 5 1 2 3 4 5
rep(1:5, each = 2)
##  [1] 1 1 2 2 3 3 4 4 5 5
rep(1:5, length.out = 7)
## [1] 1 2 3 4 5 1 2
seq(5, 50, by = 5)
##  [1]  5 10 15 20 25 30 35 40 45 50
seq(5, 50, length.out = 5)
## [1]  5.00 16.25 27.50 38.75 50.00
paste(1:10, 20:30, sep = "-")
##  [1] "1-20"  "2-21"  "3-22"  "4-23"  "5-24"  "6-25"  "7-26"  "8-27"  "9-28"  "10-29" "1-30"
paste(1:10, collapse = "-")
## [1] "1-2-3-4-5-6-7-8-9-10"
paste0("x", 1:10)
##  [1] "x1"  "x2"  "x3"  "x4"  "x5"  "x6"  "x7"  "x8"  "x9"  "x10"
min(1:10)
## [1] 1
max(1:10)
## [1] 10
range(1:10)
## [1]  1 10
mean(1:10)
## [1] 5.5
sd(1:10)
## [1] 3.02765

Custom Functions

Users can also create their own functions

customFunction1 <- function(x, y) {
  z <- 100 * x / (x + y)
  paste(z, "%")
}
customFunction1(x = 10, y = 90)
## [1] "10 %"
customFunction2 <- function(x) {
  mymin <- mean(x - sd(x))
  mymax <- mean(x) + sd(x)
  print(paste("Min =", mymin))
  print(paste("Max =", mymax))
}
customFunction2(x = 1:10)
## [1] "Min = 2.47234964590251"
## [1] "Max = 8.52765035409749"

for loops and if else statements

xx <- NULL #creates and empty object
for(i in 1:10) {
  xx[i] <- i*3
}
xx
##  [1]  3  6  9 12 15 18 21 24 27 30
xx %% 2 #gives the remainder when divided by 2
##  [1] 1 0 1 0 1 0 1 0 1 0
for(i in 1:length(xx)) {
  if((xx[i] %% 2) == 0) {
    print(paste(xx[i],"is Even"))
  } else { 
      print(paste(xx[i],"is Odd")) 
    }
}
## [1] "3 is Odd"
## [1] "6 is Even"
## [1] "9 is Odd"
## [1] "12 is Even"
## [1] "15 is Odd"
## [1] "18 is Even"
## [1] "21 is Odd"
## [1] "24 is Even"
## [1] "27 is Odd"
## [1] "30 is Even"
# or
ifelse(xx %% 2 == 0, "Even", "Odd")
##  [1] "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even"
paste(xx, ifelse(xx %% 2 == 0, "is Even", "is Odd"))
##  [1] "3 is Odd"   "6 is Even"  "9 is Odd"   "12 is Even" "15 is Odd"  "18 is Even" "21 is Odd"  "24 is Even" "27 is Odd"  "30 is Even"

Objects

Information can be stored in user defined objects, in multiple forms:

  • c(): a string of values
  • matrix(): a two dimensional matrix in one format
  • data.frame(): a two dimensional matrix where each column can be a different format
  • list():

A string…

xc <- 1:10
xc
##  [1]  1  2  3  4  5  6  7  8  9 10
xc <- c(1,2,3,4,5,6,7,8,9,10)
xc
##  [1]  1  2  3  4  5  6  7  8  9 10

A matrix…

xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = T)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1    2    3    4    5    6    7    8    9    10
##  [2,]   11   12   13   14   15   16   17   18   19    20
##  [3,]   21   22   23   24   25   26   27   28   29    30
##  [4,]   31   32   33   34   35   36   37   38   39    40
##  [5,]   41   42   43   44   45   46   47   48   49    50
##  [6,]   51   52   53   54   55   56   57   58   59    60
##  [7,]   61   62   63   64   65   66   67   68   69    70
##  [8,]   71   72   73   74   75   76   77   78   79    80
##  [9,]   81   82   83   84   85   86   87   88   89    90
## [10,]   91   92   93   94   95   96   97   98   99   100
xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = F)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100

A data frame…

xd <- data.frame(
  x1 = c("aa","bb","cc","dd","ee",
         "ff","gg","hh","ii","jj"),
  x2 = 1:10,
  x3 = c(1,1,1,1,1,2,2,2,3,3),
  x4 = rep(c(1,2), times = 5),
  x5 = rep(1:5, times = 2),
  x6 = rep(1:5, each = 2),
  x7 = seq(5, 50, by = 5),
  x8 = log10(1:10),
  x9 = (1:10)^3,
  x10 = c(T,T,T,F,F,T,T,F,F,F)
)
xd
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

A list…

xl <- list(xc, xm, xd)
xl[[1]]
##  [1]  1  2  3  4  5  6  7  8  9 10
xl[[2]]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100
xl[[3]]
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

Selecting Data

xc[5] # 5th element in xc
## [1] 5
xd$x3[5] # 5th element in col "x3"
## [1] 1
xd[5,"x3"] # row 5, col "x3"
## [1] 1
xd$x3 # all of col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[,"x3"] # all rows, col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[3,] # row 3, all cols
##   x1 x2 x3 x4 x5 x6 x7        x8 x9  x10
## 3 cc  3  1  1  3  2 15 0.4771213 27 TRUE
xd[c(2,4),c("x4","x5")] # rows 2 & 4, cols "x4" & "x5"
##   x4 x5
## 2  2  2
## 4  2  4
xl[[3]]$x1 # 3rd object in the list, col "x1
##  [1] "aa" "bb" "cc" "dd" "ee" "ff" "gg" "hh" "ii" "jj"

regexpr

xx <- data.frame(Name = c("Item 1 (detail 1)",
                          "Item 20 (detail 20)",
                          "Item 300 (detail 300)"),
                 Item = NA,
                 Detail = NA)
xx$Detail <- substr(xx$Name, regexpr("\\(", xx$Name)+1, regexpr("\\)", xx$Name)-1)
xx$Item <- substr(xx$Name, 1, regexpr("\\(", xx$Name)-2)
xx
##                    Name     Item     Detail
## 1     Item 1 (detail 1)   Item 1   detail 1
## 2   Item 20 (detail 20)  Item 20  detail 20
## 3 Item 300 (detail 300) Item 300 detail 300

Data Formats

Data can also be saved in many formats:

  • numeric
  • integer
  • character
  • factor
  • logical
xd$x3 <- as.character(xd$x3)
xd$x3
##  [1] "1" "1" "1" "1" "1" "2" "2" "2" "3" "3"
xd$x3 <- as.numeric(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
xd$x3 <- as.factor(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 1 2 3
xd$x3 <- factor(xd$x3, levels = c("3","2","1"))
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 3 2 1
xd$x10
##  [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
as.numeric(xd$x10) # TRUE = 1, FALSE = 0
##  [1] 1 1 1 0 0 1 1 0 0 0
sum(xd$x10)
## [1] 5

Internal structure of an object can be checked with str()

str(xc) # c()
##  num [1:10] 1 2 3 4 5 6 7 8 9 10
str(xm) # matrix()
##  int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
str(xd) # data.frame()
## 'data.frame':    10 obs. of  10 variables:
##  $ x1 : chr  "aa" "bb" "cc" "dd" ...
##  $ x2 : int  1 2 3 4 5 6 7 8 9 10
##  $ x3 : Factor w/ 3 levels "3","2","1": 3 3 3 3 3 2 2 2 1 1
##  $ x4 : num  1 2 1 2 1 2 1 2 1 2
##  $ x5 : int  1 2 3 4 5 1 2 3 4 5
##  $ x6 : int  1 1 2 2 3 3 4 4 5 5
##  $ x7 : num  5 10 15 20 25 30 35 40 45 50
##  $ x8 : num  0 0.301 0.477 0.602 0.699 ...
##  $ x9 : num  1 8 27 64 125 216 343 512 729 1000
##  $ x10: logi  TRUE TRUE TRUE FALSE FALSE TRUE ...
str(xl) # list()
## List of 3
##  $ : num [1:10] 1 2 3 4 5 6 7 8 9 10
##  $ : int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
##  $ :'data.frame':    10 obs. of  10 variables:
##   ..$ x1 : chr [1:10] "aa" "bb" "cc" "dd" ...
##   ..$ x2 : int [1:10] 1 2 3 4 5 6 7 8 9 10
##   ..$ x3 : num [1:10] 1 1 1 1 1 2 2 2 3 3
##   ..$ x4 : num [1:10] 1 2 1 2 1 2 1 2 1 2
##   ..$ x5 : int [1:10] 1 2 3 4 5 1 2 3 4 5
##   ..$ x6 : int [1:10] 1 1 2 2 3 3 4 4 5 5
##   ..$ x7 : num [1:10] 5 10 15 20 25 30 35 40 45 50
##   ..$ x8 : num [1:10] 0 0.301 0.477 0.602 0.699 ...
##   ..$ x9 : num [1:10] 1 8 27 64 125 216 343 512 729 1000
##   ..$ x10: logi [1:10] TRUE TRUE TRUE FALSE FALSE TRUE ...

Packages

Additional libraries can be installed and loaded for use.

install.packages("scales")
library(scales)
xx <- data.frame(Values = 1:10)
xx$Rescaled <- rescale(x = xx$Values, to = c(1,30))
xx
##    Values  Rescaled
## 1       1  1.000000
## 2       2  4.222222
## 3       3  7.444444
## 4       4 10.666667
## 5       5 13.888889
## 6       6 17.111111
## 7       7 20.333333
## 8       8 23.555556
## 9       9 26.777778
## 10     10 30.000000

libraries can also be used without having to load them

scales::rescale(1:10, to = c(1,30))
##  [1]  1.000000  4.222222  7.444444 10.666667 13.888889 17.111111 20.333333 23.555556 26.777778 30.000000

Data Wrangling

R for Data Science - https://r4ds.had.co.nz/

xx <- data.frame(Group = c("X","X","Y","Y","Y","X","X","X","Y","Y"),
                 Data1 = 1:10, 
                 Data2 = seq(10, 100, by = 10))
xx$NewData1 <- xx$Data1 + xx$Data2
xx$NewData2 <- xx$Data1 * 1000
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      X     6    60       66     6000
## 7      X     7    70       77     7000
## 8      X     8    80       88     8000
## 9      Y     9    90       99     9000
## 10     Y    10   100      110    10000
xx$Data1 < 5 # which are less than 5
##  [1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
xx[xx$Data1 < 5,]
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx[xx$Group == "X", c("Group","Data2","NewData1")]
##   Group Data2 NewData1
## 1     X    10       11
## 2     X    20       22
## 6     X    60       66
## 7     X    70       77
## 8     X    80       88

Data wrangling with tidyverse and pipes (%>%)

library(tidyverse) # install.packages("tidyverse")
xx <- data.frame(Group = c("X","X","Y","Y","Y","Y","Y","X","X","X")) %>%
  mutate(Data1 = 1:10, 
         Data2 = seq(10, 100, by = 10),
         NewData1 = Data1 + Data2,
         NewData2 = Data1 * 1000)
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      Y     6    60       66     6000
## 7      Y     7    70       77     7000
## 8      X     8    80       88     8000
## 9      X     9    90       99     9000
## 10     X    10   100      110    10000
filter(xx, Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Group == "X") %>% 
  select(Group, NewColName=Data2, NewData1)
##   Group NewColName NewData1
## 1     X         10       11
## 2     X         20       22
## 3     X         80       88
## 4     X         90       99
## 5     X        100      110
xs <- xx %>% 
  group_by(Group) %>% 
  summarise(Data2_mean = mean(Data2),
            Data2_sd = sd(Data2),
            NewData2_mean = mean(NewData2),
            NewData2_sd = sd(NewData2))
xs
## # A tibble: 2 × 5
##   Group Data2_mean Data2_sd NewData2_mean NewData2_sd
##   <chr>      <dbl>    <dbl>         <dbl>       <dbl>
## 1 X             60     41.8          6000       4183.
## 2 Y             50     15.8          5000       1581.
xx %>% left_join(xs, by = "Group")
##    Group Data1 Data2 NewData1 NewData2 Data2_mean Data2_sd NewData2_mean NewData2_sd
## 1      X     1    10       11     1000         60 41.83300          6000    4183.300
## 2      X     2    20       22     2000         60 41.83300          6000    4183.300
## 3      Y     3    30       33     3000         50 15.81139          5000    1581.139
## 4      Y     4    40       44     4000         50 15.81139          5000    1581.139
## 5      Y     5    50       55     5000         50 15.81139          5000    1581.139
## 6      Y     6    60       66     6000         50 15.81139          5000    1581.139
## 7      Y     7    70       77     7000         50 15.81139          5000    1581.139
## 8      X     8    80       88     8000         60 41.83300          6000    4183.300
## 9      X     9    90       99     9000         60 41.83300          6000    4183.300
## 10     X    10   100      110    10000         60 41.83300          6000    4183.300

Read/Write data

xx <- read.csv("data_r_tutorial.csv")
write.csv(xx, "data_r_tutorial.csv", row.names = F)

For excel sheets, the package readxl can be used to read in sheets of data.

library(readxl) # install.packages("readxl")
xx <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data")

Tidy Data

yy <- xx %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = round(mean(DTF),1)) %>% 
  arrange(Location)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          Location            Mean_DTF
##   <chr>         <chr>                  <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh     86.7
## 2 ILL 618 AGL   Jessore, Bangladesh     79.3
## 3 Laird AGL     Jessore, Bangladesh     76.8
## 4 CDC Maxim AGL Metaponto, Italy       134. 
## 5 ILL 618 AGL   Metaponto, Italy       138. 
## 6 Laird AGL     Metaponto, Italy       137. 
## 7 CDC Maxim AGL Saskatoon, Canada       52.5
## 8 ILL 618 AGL   Saskatoon, Canada       47  
## 9 Laird AGL     Saskatoon, Canada       56.8
yy <- yy %>% spread(key = Location, value = Mean_DTF)
yy
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Jessore, Bangladesh` `Metaponto, Italy` `Saskatoon, Canada`
##   <chr>                         <dbl>              <dbl>               <dbl>
## 1 CDC Maxim AGL                  86.7               134.                52.5
## 2 ILL 618 AGL                    79.3               138.                47  
## 3 Laird AGL                      76.8               137.                56.8
yy <- yy %>% gather(key = TraitName, value = Value, 2:4)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          TraitName           Value
##   <chr>         <chr>               <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh  86.7
## 2 ILL 618 AGL   Jessore, Bangladesh  79.3
## 3 Laird AGL     Jessore, Bangladesh  76.8
## 4 CDC Maxim AGL Metaponto, Italy    134. 
## 5 ILL 618 AGL   Metaponto, Italy    138. 
## 6 Laird AGL     Metaponto, Italy    137. 
## 7 CDC Maxim AGL Saskatoon, Canada    52.5
## 8 ILL 618 AGL   Saskatoon, Canada    47  
## 9 Laird AGL     Saskatoon, Canada    56.8
yy <- yy %>% spread(key = Name, value = Value)
yy
## # A tibble: 3 × 4
##   TraitName           `CDC Maxim AGL` `ILL 618 AGL` `Laird AGL`
##   <chr>                         <dbl>         <dbl>       <dbl>
## 1 Jessore, Bangladesh            86.7          79.3        76.8
## 2 Metaponto, Italy              134.          138.        137. 
## 3 Saskatoon, Canada              52.5          47          56.8

Base Plotting

We will start with some basic plotting using the base function plot()

# A basic scatter plot
plot(x = xd$x8, y = xd$x9)

# Adjust color and shape of the points
plot(x = xd$x8, y = xd$x9, col = "darkred", pch = 0)

plot(x = xd$x8, y = xd$x9, col = xd$x4, pch = xd$x4)

# Adjust plot type 
plot(x = xd$x8, y = xd$x9, type = "line")

# Adjust linetype
plot(x = xd$x8, y = xd$x9, type = "line", lty = 2)

# Plot lines and points
plot(x = xd$x8, y = xd$x9, type = "both")

Now lets create some random and normally distributed data to make some more complicated plots

# 100 random uniformly distributed numbers ranging from 0 - 100
ru <- runif(100, min = 0, max = 100)
ru
##   [1] 83.9385938 47.6685186 51.0113134 47.4808920 56.0496414 43.9301619 33.9189254 89.6747347 48.3657470 85.3856817 27.4782782 60.0826166 53.6222934
##  [14] 49.5091886 58.9135026 56.7078736 47.7778394 52.1273637 32.7391070 51.9839304  4.2263506 94.8772687 72.7153830 24.3481158 26.9969326 66.0491546
##  [27] 84.8270942  5.3745016 41.4901967 26.3654307 88.5097251  8.6492783 48.2558970 22.9916757 93.0087806 37.3761428 91.8525676 41.8874054  9.6523355
##  [40] 94.3197408 10.9671941 60.9047846  0.8235535 29.4866006 18.2352625 32.0162458 78.2770757 71.2054812 24.8265909 85.7993439 14.6153662 30.0517371
##  [53] 94.8777473 30.5639716 56.7783288 31.3437884 68.3301217 52.5601208 56.8747610 10.7039096 45.8967111 74.0847485 63.9052636 35.7245788 43.6789545
##  [66] 15.9007604 88.0276202 24.1133723 11.2153851 13.1528465 35.8874855 76.4856586 67.8273931 56.5128449 12.6189334 64.3942273 79.4839139 89.7307041
##  [79] 76.6859159  7.8306445 66.2253910 28.7264626 94.3039013 63.0557809 40.6909791 67.1543161 83.8830839  4.0028454 14.8887969 90.0931116 46.3145686
##  [92] 55.4028437 33.3037991  1.5251874 95.3910953 52.8318395 19.3196484 23.4592390 44.0801516 55.6885129
plot(x = ru)

order(ru)
##   [1]  43  94  88  21  28  80  32  39  60  41  69  75  70  51  89  66  45  97  34  98  68  24  49  30  25  11  82  44  52  54  56  46  19  93   7  64
##  [37]  71  36  85  29  38  65   6  99  61  91   4   2  17  33   9  14   3  20  18  58  96  13  92 100   5  74  16  55  59  15  12  42  84  63  76  26
##  [73]  81  86  73  57  48  23  62  72  79  47  77  87   1  27  10  50  67  31   8  78  90  37  35  83  40  22  53  95
ru<- ru[order(ru)]
ru
##   [1]  0.8235535  1.5251874  4.0028454  4.2263506  5.3745016  7.8306445  8.6492783  9.6523355 10.7039096 10.9671941 11.2153851 12.6189334 13.1528465
##  [14] 14.6153662 14.8887969 15.9007604 18.2352625 19.3196484 22.9916757 23.4592390 24.1133723 24.3481158 24.8265909 26.3654307 26.9969326 27.4782782
##  [27] 28.7264626 29.4866006 30.0517371 30.5639716 31.3437884 32.0162458 32.7391070 33.3037991 33.9189254 35.7245788 35.8874855 37.3761428 40.6909791
##  [40] 41.4901967 41.8874054 43.6789545 43.9301619 44.0801516 45.8967111 46.3145686 47.4808920 47.6685186 47.7778394 48.2558970 48.3657470 49.5091886
##  [53] 51.0113134 51.9839304 52.1273637 52.5601208 52.8318395 53.6222934 55.4028437 55.6885129 56.0496414 56.5128449 56.7078736 56.7783288 56.8747610
##  [66] 58.9135026 60.0826166 60.9047846 63.0557809 63.9052636 64.3942273 66.0491546 66.2253910 67.1543161 67.8273931 68.3301217 71.2054812 72.7153830
##  [79] 74.0847485 76.4856586 76.6859159 78.2770757 79.4839139 83.8830839 83.9385938 84.8270942 85.3856817 85.7993439 88.0276202 88.5097251 89.6747347
##  [92] 89.7307041 90.0931116 91.8525676 93.0087806 94.3039013 94.3197408 94.8772687 94.8777473 95.3910953
plot(x = ru)

# 100 normally distributed numbers with a mean of 50 and sd of 10
nd <- rnorm(100, mean = 50, sd = 10)
nd
##   [1] 69.47302 52.94900 61.17479 66.87745 60.02099 58.47751 52.55681 29.18088 29.06190 51.83712 47.67019 65.15320 57.36692 46.02636 48.16292 51.97608
##  [17] 46.30662 58.64375 52.76104 43.89117 35.33454 40.08926 57.20610 29.42398 62.01474 32.60531 62.78964 58.49953 56.86657 41.81723 57.42682 56.71244
##  [33] 59.66055 41.91024 61.21200 44.13556 63.42026 54.05991 42.56530 37.15877 53.23815 51.23214 40.81490 45.53181 54.16663 38.53148 48.59726 57.28928
##  [49] 46.87818 46.05690 41.52812 48.96601 60.83477 48.24499 53.16201 45.27040 63.97573 45.18612 55.91992 53.54905 44.76797 58.24586 51.99453 37.42634
##  [65] 43.56152 42.30825 46.26459 56.56030 68.64075 40.32809 63.44433 37.23807 51.57255 58.47347 43.85224 45.64457 55.51747 56.91243 64.16159 50.94349
##  [81] 48.11998 71.85551 54.34031 39.44994 55.04278 57.90405 50.78413 21.74343 57.64977 59.61039 54.22703 39.18790 32.58203 55.88486 39.27481 56.32626
##  [97] 43.81956 68.50587 59.55552 34.07030
nd <- nd[order(nd)]
nd
##   [1] 21.74343 29.06190 29.18088 29.42398 32.58203 32.60531 34.07030 35.33454 37.15877 37.23807 37.42634 38.53148 39.18790 39.27481 39.44994 40.08926
##  [17] 40.32809 40.81490 41.52812 41.81723 41.91024 42.30825 42.56530 43.56152 43.81956 43.85224 43.89117 44.13556 44.76797 45.18612 45.27040 45.53181
##  [33] 45.64457 46.02636 46.05690 46.26459 46.30662 46.87818 47.67019 48.11998 48.16292 48.24499 48.59726 48.96601 50.78413 50.94349 51.23214 51.57255
##  [49] 51.83712 51.97608 51.99453 52.55681 52.76104 52.94900 53.16201 53.23815 53.54905 54.05991 54.16663 54.22703 54.34031 55.04278 55.51747 55.88486
##  [65] 55.91992 56.32626 56.56030 56.71244 56.86657 56.91243 57.20610 57.28928 57.36692 57.42682 57.64977 57.90405 58.24586 58.47347 58.47751 58.49953
##  [81] 58.64375 59.55552 59.61039 59.66055 60.02099 60.83477 61.17479 61.21200 62.01474 62.78964 63.42026 63.44433 63.97573 64.16159 65.15320 66.87745
##  [97] 68.50587 68.64075 69.47302 71.85551
plot(x = nd)

hist(x = nd)

hist(nd, breaks = 20, col = "darkgreen")

plot(x = density(nd))

boxplot(x = nd)

boxplot(x = nd, horizontal = T)


ggplot2

Lets be honest, the base plots are ugly! The ggplot2 package gives the user to create a better, more visually appealing plots. Additional packages such as ggbeeswarm and ggrepel also contain useful functions to add to the functionality of ggplot2.

library(ggplot2)
mp <- ggplot(xd, aes(x = x8, y = x9))
mp + geom_point()

mp + geom_point(aes(color = x3, shape = x3), size = 4)

mp + geom_line(size = 2)

mp + geom_line(aes(color = x3), size = 2)

mp + geom_smooth(method = "loess")

mp + geom_smooth(method = "lm")

xx <- data.frame(data = c(rnorm(50, mean = 40, sd = 10),
                          rnorm(50, mean = 60, sd = 5)),
                 group = factor(rep(1:2, each = 50)),
                 label = c("Label1", rep(NA, 49), "Label2", rep(NA, 49)))
mp <- ggplot(xx, aes(x = data, fill = group))
mp + geom_histogram(color = "black")

mp + geom_histogram(color = "black", position = "dodge")

mp1 <- mp + geom_histogram(color = "black") + facet_grid(group~.)
mp1

mp + geom_density(alpha = 0.5)

mp <- ggplot(xx, aes(x = group, y = data, fill = group))
mp + geom_boxplot(color = "black")

mp + geom_boxplot() + geom_point()

mp + geom_violin() + geom_boxplot(width = 0.1, fill = "white")

library(ggbeeswarm)
mp + geom_quasirandom()

mp + geom_quasirandom(aes(shape = group))

mp2 <- mp + geom_violin() + 
  geom_boxplot(width = 0.1, fill = "white") +
  geom_beeswarm(alpha = 0.5)
library(ggrepel)
mp2 + geom_text_repel(aes(label = label), nudge_x = 0.4)

library(ggpubr)
ggarrange(mp1, mp2, ncol = 2, widths = c(2,1),
          common.legend = T, legend = "bottom")


Statistics

# Prep data
lev_Loc  <- c("Saskatoon, Canada", "Jessore, Bangladesh", "Metaponto, Italy")
lev_Name <- c("ILL 618 AGL", "CDC Maxim AGL", "Laird AGL")
dd <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data") %>%
  mutate(Location = factor(Location, levels = lev_Loc),
         Name = factor(Name, levels = lev_Name))
xx <- dd %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = mean(DTF))
xx %>% spread(Location, Mean_DTF)
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Saskatoon, Canada` `Jessore, Bangladesh` `Metaponto, Italy`
##   <fct>                       <dbl>                 <dbl>              <dbl>
## 1 ILL 618 AGL                  47                    79.3               138.
## 2 CDC Maxim AGL                52.5                  86.7               134.
## 3 Laird AGL                    56.8                  76.8               137.
# Plot
mp1 <- ggplot(dd, aes(x = Location, y = DTF, color = Name, shape = Name)) +
  geom_point(size = 2, alpha = 0.7, position = position_dodge(width=0.5))
mp2 <- ggplot(xx, aes(x = Location, y = Mean_DTF, 
                      color = Name, group = Name, shape = Name)) +
  geom_point(size = 2.5, alpha = 0.7) + 
  geom_line(size = 1, alpha = 0.7) +
  theme(legend.position = "top")
ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "top")

From first glace, it is clear there are differences between genotypes, locations, and genotype x environment (GxE) interactions. Now let’s do a few statistical tests.

summary(aov(DTF ~ Name * Location, data = dd))
##               Df Sum Sq Mean Sq  F value   Pr(>F)    
## Name           2     88      44    3.476   0.0395 *  
## Location       2  65863   32932 2598.336  < 2e-16 ***
## Name:Location  4    560     140   11.044 2.52e-06 ***
## Residuals     45    570      13                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected, an ANOVA shows statistical significance for genotype (p-value = 0.0395), Location (p-value < 2e-16) and GxE interactions (p-value < 2.52e-06). However, all this tells us is that one genotype is different from the rest, one location is different from the others and that there is GxE interactions. If we want to be more specific, would need to do some multiple comparison tests.

If we only have two things to compare, we could do a t-test.

xx <- dd %>% 
  filter(Location %in% c("Saskatoon, Canada", "Jessore, Bangladesh")) %>%
  spread(Location, DTF)
t.test(x = xx$`Saskatoon, Canada`, y = xx$`Jessore, Bangladesh`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`Saskatoon, Canada` and xx$`Jessore, Bangladesh`
## t = -17.521, df = 32.701, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -32.18265 -25.48402
## sample estimates:
## mean of x mean of y 
##  52.11111  80.94444

DTF in Saskatoon, Canada is significantly different (p-value < 2.2e-16) from DTF in Jessore, Bangladesh.

xx <- dd %>% 
  filter(Name %in% c("ILL 618 AGL", "Laird AGL"),
         Location == "Metaponto, Italy") %>%
  spread(Name, DTF)
t.test(x = xx$`ILL 618 AGL`, y = xx$`Laird AGL`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`ILL 618 AGL` and xx$`Laird AGL`
## t = 0.38008, df = 8.0564, p-value = 0.7137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.059739  7.059739
## sample estimates:
## mean of x mean of y 
##  137.8333  136.8333

DTF between ILL 618 AGL and Laird AGL are not significantly different (p-value = 0.7137) in Metaponto, Italy.


pch Plot

xx <- data.frame(x = rep(1:6, times = 5, length.out = 26),
                 y = rep(5:1, each = 6, length.out = 26),
                 pch = 0:25)
mp <- ggplot(xx, aes(x = x, y = y, shape = as.factor(pch))) +
  geom_point(color = "darkred", fill = "darkblue", size = 5) +
  geom_text(aes(label = pch), nudge_x = -0.25) +
  scale_shape_manual(values = xx$pch) +
  scale_x_continuous(breaks = 6:1) +
  scale_y_continuous(breaks = 6:1) +
  theme_void() +
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  labs(title = "Plot symbols in R (pch)",
       subtitle = "color = \"darkred\", fill = \"darkblue\"",
       x = NULL, y = NULL)
ggsave("pch.png", mp, width = 4.5, height = 3, bg = "white")


R Markdown

Tutorials on how to create an R markdown document like this one can be found here:



dblogr/


© Derek Michael Wright