R Tutorial
An introduction to R
Introduction
This tutorial is will introduce the reader to , a free, open-source statistical computing environment often used with RStudio, a integrated development environment for .
Download
- Download at https://www.r-project.org/
- Download
RStudio
at https://rstudio.com/products/rstudio/download/
Calculator
can be used as a super awesome calculator
## [1] 8
## [1] 8
## [1] 8
## [1] 8
## [1] 8
Functions
has many useful built in functions
## [1] 1 2 3 4 5 6 7 8 9 10
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
## [1] 1 2 1 2 1 2 1 2 1 2
## [1] 1 2 3 4 5 1 2 3 4 5
## [1] 1 1 2 2 3 3 4 4 5 5
## [1] 1 2 3 4 5 1 2
## [1] 5 10 15 20 25 30 35 40 45 50
## [1] 5.00 16.25 27.50 38.75 50.00
## [1] "1-20" "2-21" "3-22" "4-23" "5-24" "6-25" "7-26" "8-27" "9-28" "10-29" "1-30"
## [1] "1-2-3-4-5-6-7-8-9-10"
## [1] "x1" "x2" "x3" "x4" "x5" "x6" "x7" "x8" "x9" "x10"
## [1] 1
## [1] 10
## [1] 1 10
## [1] 5.5
## [1] 3.02765
Custom Functions
Users can also create their own functions
## [1] "10 %"
## [1] "Min = 2.47234964590251"
## [1] "Max = 8.52765035409749"
for
loops and if
else
statements
## [1] 3 6 9 12 15 18 21 24 27 30
## [1] 1 0 1 0 1 0 1 0 1 0
## [1] "3 is Odd"
## [1] "6 is Even"
## [1] "9 is Odd"
## [1] "12 is Even"
## [1] "15 is Odd"
## [1] "18 is Even"
## [1] "21 is Odd"
## [1] "24 is Even"
## [1] "27 is Odd"
## [1] "30 is Even"
## [1] "Odd" "Even" "Odd" "Even" "Odd" "Even" "Odd" "Even" "Odd" "Even"
## [1] "3 is Odd" "6 is Even" "9 is Odd" "12 is Even" "15 is Odd" "18 is Even" "21 is Odd" "24 is Even" "27 is Odd" "30 is Even"
Objects
Information can be stored in user defined objects, in multiple forms:
c()
: a string of valuesmatrix()
: a two dimensional matrix in one formatdata.frame()
: a two dimensional matrix where each column can be a different formatlist()
:
A string…
## [1] 1 2 3 4 5 6 7 8 9 10
## [1] 1 2 3 4 5 6 7 8 9 10
A matrix…
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 2 3 4 5 6 7 8 9 10
## [2,] 11 12 13 14 15 16 17 18 19 20
## [3,] 21 22 23 24 25 26 27 28 29 30
## [4,] 31 32 33 34 35 36 37 38 39 40
## [5,] 41 42 43 44 45 46 47 48 49 50
## [6,] 51 52 53 54 55 56 57 58 59 60
## [7,] 61 62 63 64 65 66 67 68 69 70
## [8,] 71 72 73 74 75 76 77 78 79 80
## [9,] 81 82 83 84 85 86 87 88 89 90
## [10,] 91 92 93 94 95 96 97 98 99 100
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 11 21 31 41 51 61 71 81 91
## [2,] 2 12 22 32 42 52 62 72 82 92
## [3,] 3 13 23 33 43 53 63 73 83 93
## [4,] 4 14 24 34 44 54 64 74 84 94
## [5,] 5 15 25 35 45 55 65 75 85 95
## [6,] 6 16 26 36 46 56 66 76 86 96
## [7,] 7 17 27 37 47 57 67 77 87 97
## [8,] 8 18 28 38 48 58 68 78 88 98
## [9,] 9 19 29 39 49 59 69 79 89 99
## [10,] 10 20 30 40 50 60 70 80 90 100
A data frame…
## x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## 1 aa 1 1 1 1 1 5 0.0000000 1 TRUE
## 2 bb 2 1 2 2 1 10 0.3010300 8 TRUE
## 3 cc 3 1 1 3 2 15 0.4771213 27 TRUE
## 4 dd 4 1 2 4 2 20 0.6020600 64 FALSE
## 5 ee 5 1 1 5 3 25 0.6989700 125 FALSE
## 6 ff 6 2 2 1 3 30 0.7781513 216 TRUE
## 7 gg 7 2 1 2 4 35 0.8450980 343 TRUE
## 8 hh 8 2 2 3 4 40 0.9030900 512 FALSE
## 9 ii 9 3 1 4 5 45 0.9542425 729 FALSE
## 10 jj 10 3 2 5 5 50 1.0000000 1000 FALSE
A list…
## [1] 1 2 3 4 5 6 7 8 9 10
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 11 21 31 41 51 61 71 81 91
## [2,] 2 12 22 32 42 52 62 72 82 92
## [3,] 3 13 23 33 43 53 63 73 83 93
## [4,] 4 14 24 34 44 54 64 74 84 94
## [5,] 5 15 25 35 45 55 65 75 85 95
## [6,] 6 16 26 36 46 56 66 76 86 96
## [7,] 7 17 27 37 47 57 67 77 87 97
## [8,] 8 18 28 38 48 58 68 78 88 98
## [9,] 9 19 29 39 49 59 69 79 89 99
## [10,] 10 20 30 40 50 60 70 80 90 100
## x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## 1 aa 1 1 1 1 1 5 0.0000000 1 TRUE
## 2 bb 2 1 2 2 1 10 0.3010300 8 TRUE
## 3 cc 3 1 1 3 2 15 0.4771213 27 TRUE
## 4 dd 4 1 2 4 2 20 0.6020600 64 FALSE
## 5 ee 5 1 1 5 3 25 0.6989700 125 FALSE
## 6 ff 6 2 2 1 3 30 0.7781513 216 TRUE
## 7 gg 7 2 1 2 4 35 0.8450980 343 TRUE
## 8 hh 8 2 2 3 4 40 0.9030900 512 FALSE
## 9 ii 9 3 1 4 5 45 0.9542425 729 FALSE
## 10 jj 10 3 2 5 5 50 1.0000000 1000 FALSE
Selecting Data
## [1] 5
## [1] 1
## [1] 1
## [1] 1 1 1 1 1 2 2 2 3 3
## [1] 1 1 1 1 1 2 2 2 3 3
## x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## 3 cc 3 1 1 3 2 15 0.4771213 27 TRUE
## x4 x5
## 2 2 2
## 4 2 4
## [1] "aa" "bb" "cc" "dd" "ee" "ff" "gg" "hh" "ii" "jj"
regexpr
## Name Item Detail
## 1 Item 1 (detail 1) Item 1 detail 1
## 2 Item 20 (detail 20) Item 20 detail 20
## 3 Item 300 (detail 300) Item 300 detail 300
Data Formats
Data can also be saved in many formats:
- numeric
- integer
- character
- factor
- logical
## [1] "1" "1" "1" "1" "1" "2" "2" "2" "3" "3"
## [1] 1 1 1 1 1 2 2 2 3 3
## [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 1 2 3
## [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 3 2 1
## [1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [1] 1 1 1 0 0 1 1 0 0 0
## [1] 5
Internal structure of an object can be checked with
str()
## num [1:10] 1 2 3 4 5 6 7 8 9 10
## int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
## 'data.frame': 10 obs. of 10 variables:
## $ x1 : chr "aa" "bb" "cc" "dd" ...
## $ x2 : int 1 2 3 4 5 6 7 8 9 10
## $ x3 : Factor w/ 3 levels "3","2","1": 3 3 3 3 3 2 2 2 1 1
## $ x4 : num 1 2 1 2 1 2 1 2 1 2
## $ x5 : int 1 2 3 4 5 1 2 3 4 5
## $ x6 : int 1 1 2 2 3 3 4 4 5 5
## $ x7 : num 5 10 15 20 25 30 35 40 45 50
## $ x8 : num 0 0.301 0.477 0.602 0.699 ...
## $ x9 : num 1 8 27 64 125 216 343 512 729 1000
## $ x10: logi TRUE TRUE TRUE FALSE FALSE TRUE ...
## List of 3
## $ : num [1:10] 1 2 3 4 5 6 7 8 9 10
## $ : int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
## $ :'data.frame': 10 obs. of 10 variables:
## ..$ x1 : chr [1:10] "aa" "bb" "cc" "dd" ...
## ..$ x2 : int [1:10] 1 2 3 4 5 6 7 8 9 10
## ..$ x3 : num [1:10] 1 1 1 1 1 2 2 2 3 3
## ..$ x4 : num [1:10] 1 2 1 2 1 2 1 2 1 2
## ..$ x5 : int [1:10] 1 2 3 4 5 1 2 3 4 5
## ..$ x6 : int [1:10] 1 1 2 2 3 3 4 4 5 5
## ..$ x7 : num [1:10] 5 10 15 20 25 30 35 40 45 50
## ..$ x8 : num [1:10] 0 0.301 0.477 0.602 0.699 ...
## ..$ x9 : num [1:10] 1 8 27 64 125 216 343 512 729 1000
## ..$ x10: logi [1:10] TRUE TRUE TRUE FALSE FALSE TRUE ...
Packages
Additional libraries can be installed and loaded for use.
## Values Rescaled
## 1 1 1.000000
## 2 2 4.222222
## 3 3 7.444444
## 4 4 10.666667
## 5 5 13.888889
## 6 6 17.111111
## 7 7 20.333333
## 8 8 23.555556
## 9 9 26.777778
## 10 10 30.000000
libraries can also be used without having to load them
## [1] 1.000000 4.222222 7.444444 10.666667 13.888889 17.111111 20.333333 23.555556 26.777778 30.000000
Data Wrangling
R for Data Science - https://r4ds.had.co.nz/
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## 5 Y 5 50 55 5000
## 6 X 6 60 66 6000
## 7 X 7 70 77 7000
## 8 X 8 80 88 8000
## 9 Y 9 90 99 9000
## 10 Y 10 100 110 10000
## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## Group Data2 NewData1
## 1 X 10 11
## 2 X 20 22
## 6 X 60 66
## 7 X 70 77
## 8 X 80 88
Data wrangling with tidyverse
and pipes
(%>%
)
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## 5 Y 5 50 55 5000
## 6 Y 6 60 66 6000
## 7 Y 7 70 77 7000
## 8 X 8 80 88 8000
## 9 X 9 90 99 9000
## 10 X 10 100 110 10000
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## Group NewColName NewData1
## 1 X 10 11
## 2 X 20 22
## 3 X 80 88
## 4 X 90 99
## 5 X 100 110
## # A tibble: 2 × 5
## Group Data2_mean Data2_sd NewData2_mean NewData2_sd
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 X 60 41.8 6000 4183.
## 2 Y 50 15.8 5000 1581.
## Group Data1 Data2 NewData1 NewData2 Data2_mean Data2_sd NewData2_mean NewData2_sd
## 1 X 1 10 11 1000 60 41.83300 6000 4183.300
## 2 X 2 20 22 2000 60 41.83300 6000 4183.300
## 3 Y 3 30 33 3000 50 15.81139 5000 1581.139
## 4 Y 4 40 44 4000 50 15.81139 5000 1581.139
## 5 Y 5 50 55 5000 50 15.81139 5000 1581.139
## 6 Y 6 60 66 6000 50 15.81139 5000 1581.139
## 7 Y 7 70 77 7000 50 15.81139 5000 1581.139
## 8 X 8 80 88 8000 60 41.83300 6000 4183.300
## 9 X 9 90 99 9000 60 41.83300 6000 4183.300
## 10 X 10 100 110 10000 60 41.83300 6000 4183.300
Read/Write data
For excel sheets, the package readxl
can be used to read
in sheets of data.
Tidy Data
- Tutorial 1 - https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
- Tutorial 2 - https://r4ds.had.co.nz/tidy-data.html
## # A tibble: 9 × 3
## # Groups: Name [3]
## Name Location Mean_DTF
## <chr> <chr> <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh 86.7
## 2 ILL 618 AGL Jessore, Bangladesh 79.3
## 3 Laird AGL Jessore, Bangladesh 76.8
## 4 CDC Maxim AGL Metaponto, Italy 134.
## 5 ILL 618 AGL Metaponto, Italy 138.
## 6 Laird AGL Metaponto, Italy 137.
## 7 CDC Maxim AGL Saskatoon, Canada 52.5
## 8 ILL 618 AGL Saskatoon, Canada 47
## 9 Laird AGL Saskatoon, Canada 56.8
## # A tibble: 3 × 4
## # Groups: Name [3]
## Name `Jessore, Bangladesh` `Metaponto, Italy` `Saskatoon, Canada`
## <chr> <dbl> <dbl> <dbl>
## 1 CDC Maxim AGL 86.7 134. 52.5
## 2 ILL 618 AGL 79.3 138. 47
## 3 Laird AGL 76.8 137. 56.8
## # A tibble: 9 × 3
## # Groups: Name [3]
## Name TraitName Value
## <chr> <chr> <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh 86.7
## 2 ILL 618 AGL Jessore, Bangladesh 79.3
## 3 Laird AGL Jessore, Bangladesh 76.8
## 4 CDC Maxim AGL Metaponto, Italy 134.
## 5 ILL 618 AGL Metaponto, Italy 138.
## 6 Laird AGL Metaponto, Italy 137.
## 7 CDC Maxim AGL Saskatoon, Canada 52.5
## 8 ILL 618 AGL Saskatoon, Canada 47
## 9 Laird AGL Saskatoon, Canada 56.8
## # A tibble: 3 × 4
## TraitName `CDC Maxim AGL` `ILL 618 AGL` `Laird AGL`
## <chr> <dbl> <dbl> <dbl>
## 1 Jessore, Bangladesh 86.7 79.3 76.8
## 2 Metaponto, Italy 134. 138. 137.
## 3 Saskatoon, Canada 52.5 47 56.8
Base Plotting
We will start with some basic plotting using the base function
plot()
Now lets create some random and normally distributed data to make some more complicated plots
## [1] 41.294380 14.236937 78.455467 37.197418 61.544754 17.711357 77.444245 12.151719 7.069383 76.682805 68.660349 26.104844 17.269590 64.738020
## [15] 63.085262 63.309908 34.500917 58.904911 38.875510 15.050916 83.532096 41.099553 24.111318 21.807740 80.126354 20.436086 71.098675 1.558712
## [29] 34.170707 2.670760 8.532846 12.035083 63.898236 65.990916 41.478168 13.927591 27.426925 49.590914 57.858172 47.914709 56.217218 93.621357
## [43] 25.934435 24.411010 64.138815 57.394161 44.594396 10.129101 85.389647 32.995193 90.667172 94.531295 58.496547 53.482688 37.241704 77.188987
## [57] 7.533118 28.311980 56.457326 62.922939 15.956070 5.301113 84.604881 0.170550 89.307101 58.877322 52.187068 53.253283 90.601364 84.647849
## [71] 65.349049 16.408071 64.639549 12.494806 45.708969 37.660166 41.334110 80.458602 80.748485 65.459945 78.093037 27.691945 9.819385 5.210182
## [85] 28.954844 70.320997 33.789174 81.321642 5.730008 57.675436 50.985323 30.270836 22.359211 21.530517 89.431370 43.255988 87.775134 15.456258
## [99] 37.659118 12.277204
## [1] 64 28 30 84 62 89 9 57 31 83 48 32 8 100 74 36 2 20 98 61 72 13 6 26 94 24 93 23 44 43 12 37 82 58 85 92
## [37] 50 87 29 17 4 55 99 76 19 22 1 77 35 96 47 75 40 38 91 67 68 54 41 59 46 90 39 53 66 18 5 60 15 16 33 45
## [73] 73 14 71 80 34 11 86 27 10 56 7 81 3 25 78 79 88 21 63 70 49 97 65 95 69 51 42 52
## [1] 0.170550 1.558712 2.670760 5.210182 5.301113 5.730008 7.069383 7.533118 8.532846 9.819385 10.129101 12.035083 12.151719 12.277204
## [15] 12.494806 13.927591 14.236937 15.050916 15.456258 15.956070 16.408071 17.269590 17.711357 20.436086 21.530517 21.807740 22.359211 24.111318
## [29] 24.411010 25.934435 26.104844 27.426925 27.691945 28.311980 28.954844 30.270836 32.995193 33.789174 34.170707 34.500917 37.197418 37.241704
## [43] 37.659118 37.660166 38.875510 41.099553 41.294380 41.334110 41.478168 43.255988 44.594396 45.708969 47.914709 49.590914 50.985323 52.187068
## [57] 53.253283 53.482688 56.217218 56.457326 57.394161 57.675436 57.858172 58.496547 58.877322 58.904911 61.544754 62.922939 63.085262 63.309908
## [71] 63.898236 64.138815 64.639549 64.738020 65.349049 65.459945 65.990916 68.660349 70.320997 71.098675 76.682805 77.188987 77.444245 78.093037
## [85] 78.455467 80.126354 80.458602 80.748485 81.321642 83.532096 84.604881 84.647849 85.389647 87.775134 89.307101 89.431370 90.601364 90.667172
## [99] 93.621357 94.531295
## [1] 55.24235 56.51237 38.38989 56.34059 34.60474 51.40061 54.07323 49.36159 41.22104 60.74067 43.11576 37.82823 49.57227 40.94635 50.13614 61.98827
## [17] 35.68201 54.33596 56.75291 49.99397 51.84351 54.00844 30.13778 46.25039 63.09890 54.11688 51.21477 54.42728 50.50584 51.09607 52.97372 59.32394
## [33] 44.31830 63.55037 60.14004 50.33256 36.18503 68.02136 46.57276 54.51903 42.48206 57.15146 39.85589 39.98148 59.67034 68.25720 63.22861 44.62826
## [49] 63.36217 46.62121 47.82791 47.43382 25.73872 55.51738 47.72345 52.91930 48.23009 46.72208 35.36565 37.44437 42.44011 40.33477 61.01940 36.36072
## [65] 39.44162 57.42794 66.26305 56.77057 59.00115 39.58001 51.87906 37.85236 33.43186 29.78071 40.73959 37.27546 48.97331 57.98845 42.45409 50.09799
## [81] 46.57420 37.31283 43.87309 46.96356 51.82001 62.46067 37.41981 53.71064 67.67014 47.82274 50.13994 41.45448 43.17334 60.37031 36.07161 81.69330
## [97] 27.82253 56.76552 53.18128 48.41468
## [1] 25.73872 27.82253 29.78071 30.13778 33.43186 34.60474 35.36565 35.68201 36.07161 36.18503 36.36072 37.27546 37.31283 37.41981 37.44437 37.82823
## [17] 37.85236 38.38989 39.44162 39.58001 39.85589 39.98148 40.33477 40.73959 40.94635 41.22104 41.45448 42.44011 42.45409 42.48206 43.11576 43.17334
## [33] 43.87309 44.31830 44.62826 46.25039 46.57276 46.57420 46.62121 46.72208 46.96356 47.43382 47.72345 47.82274 47.82791 48.23009 48.41468 48.97331
## [49] 49.36159 49.57227 49.99397 50.09799 50.13614 50.13994 50.33256 50.50584 51.09607 51.21477 51.40061 51.82001 51.84351 51.87906 52.91930 52.97372
## [65] 53.18128 53.71064 54.00844 54.07323 54.11688 54.33596 54.42728 54.51903 55.24235 55.51738 56.34059 56.51237 56.75291 56.76552 56.77057 57.15146
## [81] 57.42794 57.98845 59.00115 59.32394 59.67034 60.14004 60.37031 60.74067 61.01940 61.98827 62.46067 63.09890 63.22861 63.36217 63.55037 66.26305
## [97] 67.67014 68.02136 68.25720 81.69330
ggplot2
Lets be honest, the base plots are ugly! The ggplot2
package gives the user to create a better, more visually appealing
plots. Additional packages such as ggbeeswarm
and
ggrepel
also contain useful functions to add to the
functionality of ggplot2
.
- ggplot2 - https://ggplot2.tidyverse.org/
- Tutorial 1 - http://r-statistics.co/ggplot2-Tutorial-With-R.html
- Tutorial 2 - https://www.statsandr.com/blog/graphics-in-r-with-ggplot2/
- The R Graph Gallery - https://www.r-graph-gallery.com/ggplot2-package.html
Statistics
- Handbook of Biological Statistics - http://biostathandbook.com/
- R Companion for ^ - https://rcompanion.org/rcompanion/a_02.html
# Prep data
lev_Loc <- c("Saskatoon, Canada", "Jessore, Bangladesh", "Metaponto, Italy")
lev_Name <- c("ILL 618 AGL", "CDC Maxim AGL", "Laird AGL")
dd <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data") %>%
mutate(Location = factor(Location, levels = lev_Loc),
Name = factor(Name, levels = lev_Name))
xx <- dd %>%
group_by(Name, Location) %>%
summarise(Mean_DTF = mean(DTF))
xx %>% spread(Location, Mean_DTF)
## # A tibble: 3 × 4
## # Groups: Name [3]
## Name `Saskatoon, Canada` `Jessore, Bangladesh` `Metaponto, Italy`
## <fct> <dbl> <dbl> <dbl>
## 1 ILL 618 AGL 47 79.3 138.
## 2 CDC Maxim AGL 52.5 86.7 134.
## 3 Laird AGL 56.8 76.8 137.
# Plot
mp1 <- ggplot(dd, aes(x = Location, y = DTF, color = Name, shape = Name)) +
geom_point(size = 2, alpha = 0.7, position = position_dodge(width=0.5))
mp2 <- ggplot(xx, aes(x = Location, y = Mean_DTF,
color = Name, group = Name, shape = Name)) +
geom_point(size = 2.5, alpha = 0.7) +
geom_line(size = 1, alpha = 0.7) +
theme(legend.position = "top")
ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "top")
From first glace, it is clear there are differences between genotypes, locations, and genotype x environment (GxE) interactions. Now let’s do a few statistical tests.
## Df Sum Sq Mean Sq F value Pr(>F)
## Name 2 88 44 3.476 0.0395 *
## Location 2 65863 32932 2598.336 < 2e-16 ***
## Name:Location 4 560 140 11.044 2.52e-06 ***
## Residuals 45 570 13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
As expected, an ANOVA shows statistical significance for genotype (p-value = 0.0395), Location (p-value < 2e-16) and GxE interactions (p-value < 2.52e-06). However, all this tells us is that one genotype is different from the rest, one location is different from the others and that there is GxE interactions. If we want to be more specific, would need to do some multiple comparison tests.
If we only have two things to compare, we could do a t-test.
##
## Welch Two Sample t-test
##
## data: xx$`Saskatoon, Canada` and xx$`Jessore, Bangladesh`
## t = -17.521, df = 32.701, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -32.18265 -25.48402
## sample estimates:
## mean of x mean of y
## 52.11111 80.94444
DTF in Saskatoon, Canada is significantly different (p-value < 2.2e-16) from DTF in Jessore, Bangladesh.
##
## Welch Two Sample t-test
##
## data: xx$`ILL 618 AGL` and xx$`Laird AGL`
## t = 0.38008, df = 8.0564, p-value = 0.7137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.059739 7.059739
## sample estimates:
## mean of x mean of y
## 137.8333 136.8333
DTF between ILL 618 AGL and Laird AGL are not significantly different (p-value = 0.7137) in Metaponto, Italy.
pch Plot
xx <- data.frame(x = rep(1:6, times = 5, length.out = 26),
y = rep(5:1, each = 6, length.out = 26),
pch = 0:25)
mp <- ggplot(xx, aes(x = x, y = y, shape = as.factor(pch))) +
geom_point(color = "darkred", fill = "darkblue", size = 5) +
geom_text(aes(label = pch), nudge_x = -0.25) +
scale_shape_manual(values = xx$pch) +
scale_x_continuous(breaks = 6:1) +
scale_y_continuous(breaks = 6:1) +
theme_void() +
theme(legend.position = "none",
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
axis.text = element_blank(),
axis.ticks = element_blank()) +
labs(title = "Plot symbols in R (pch)",
subtitle = "color = \"darkred\", fill = \"darkblue\"",
x = NULL, y = NULL)
ggsave("pch.png", mp, width = 4.5, height = 3, bg = "white")
R Markdown
Tutorials on how to create an R markdown document like this one can be found here: