R Tutorial
An introduction to R
Introduction
This tutorial is will introduce the reader to , a free, open-source statistical computing environment often used with RStudio, a integrated development environment for .
Download
- Download at https://www.r-project.org/
- Download
RStudioat https://rstudio.com/products/rstudio/download/
Calculator
can be used as a super awesome calculator
## [1] 8
## [1] 8
## [1] 8
## [1] 8
## [1] 8
Functions
has many useful built in functions
## [1] 1 2 3 4 5 6 7 8 9 10
## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
## [1] 1 2 1 2 1 2 1 2 1 2
## [1] 1 2 3 4 5 1 2 3 4 5
## [1] 1 1 2 2 3 3 4 4 5 5
## [1] 1 2 3 4 5 1 2
## [1] 5 10 15 20 25 30 35 40 45 50
## [1] 5.00 16.25 27.50 38.75 50.00
## [1] "1-20" "2-21" "3-22" "4-23" "5-24" "6-25" "7-26" "8-27" "9-28" "10-29" "1-30"
## [1] "1-2-3-4-5-6-7-8-9-10"
## [1] "x1" "x2" "x3" "x4" "x5" "x6" "x7" "x8" "x9" "x10"
## [1] 1
## [1] 10
## [1] 1 10
## [1] 5.5
## [1] 3.02765
Custom Functions
Users can also create their own functions
customFunction1 <- function(x, y) {
z <- 100 * x / (x + y)
paste(z, "%")
}
customFunction1(x = 10, y = 90)## [1] "10 %"
customFunction2 <- function(x) {
mymin <- mean(x - sd(x))
mymax <- mean(x) + sd(x)
print(paste("Min =", mymin))
print(paste("Max =", mymax))
}
customFunction2(x = 1:10)## [1] "Min = 2.47234964590251"
## [1] "Max = 8.52765035409749"
for loops and if else
statements
## [1] 3 6 9 12 15 18 21 24 27 30
## [1] 1 0 1 0 1 0 1 0 1 0
for(i in 1:length(xx)) {
if((xx[i] %% 2) == 0) {
print(paste(xx[i],"is Even"))
} else {
print(paste(xx[i],"is Odd"))
}
}## [1] "3 is Odd"
## [1] "6 is Even"
## [1] "9 is Odd"
## [1] "12 is Even"
## [1] "15 is Odd"
## [1] "18 is Even"
## [1] "21 is Odd"
## [1] "24 is Even"
## [1] "27 is Odd"
## [1] "30 is Even"
## [1] "Odd" "Even" "Odd" "Even" "Odd" "Even" "Odd" "Even" "Odd" "Even"
## [1] "3 is Odd" "6 is Even" "9 is Odd" "12 is Even" "15 is Odd" "18 is Even" "21 is Odd" "24 is Even" "27 is Odd"
## [10] "30 is Even"
Objects
Information can be stored in user defined objects, in multiple forms:
c(): a string of valuesmatrix(): a two dimensional matrix in one formatdata.frame(): a two dimensional matrix where each column can be a different formatlist():
A string…
## [1] 1 2 3 4 5 6 7 8 9 10
## [1] 1 2 3 4 5 6 7 8 9 10
A matrix…
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 2 3 4 5 6 7 8 9 10
## [2,] 11 12 13 14 15 16 17 18 19 20
## [3,] 21 22 23 24 25 26 27 28 29 30
## [4,] 31 32 33 34 35 36 37 38 39 40
## [5,] 41 42 43 44 45 46 47 48 49 50
## [6,] 51 52 53 54 55 56 57 58 59 60
## [7,] 61 62 63 64 65 66 67 68 69 70
## [8,] 71 72 73 74 75 76 77 78 79 80
## [9,] 81 82 83 84 85 86 87 88 89 90
## [10,] 91 92 93 94 95 96 97 98 99 100
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 11 21 31 41 51 61 71 81 91
## [2,] 2 12 22 32 42 52 62 72 82 92
## [3,] 3 13 23 33 43 53 63 73 83 93
## [4,] 4 14 24 34 44 54 64 74 84 94
## [5,] 5 15 25 35 45 55 65 75 85 95
## [6,] 6 16 26 36 46 56 66 76 86 96
## [7,] 7 17 27 37 47 57 67 77 87 97
## [8,] 8 18 28 38 48 58 68 78 88 98
## [9,] 9 19 29 39 49 59 69 79 89 99
## [10,] 10 20 30 40 50 60 70 80 90 100
A data frame…
xd <- data.frame(
x1 = c("aa","bb","cc","dd","ee",
"ff","gg","hh","ii","jj"),
x2 = 1:10,
x3 = c(1,1,1,1,1,2,2,2,3,3),
x4 = rep(c(1,2), times = 5),
x5 = rep(1:5, times = 2),
x6 = rep(1:5, each = 2),
x7 = seq(5, 50, by = 5),
x8 = log10(1:10),
x9 = (1:10)^3,
x10 = c(T,T,T,F,F,T,T,F,F,F)
)
xd## x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## 1 aa 1 1 1 1 1 5 0.0000000 1 TRUE
## 2 bb 2 1 2 2 1 10 0.3010300 8 TRUE
## 3 cc 3 1 1 3 2 15 0.4771213 27 TRUE
## 4 dd 4 1 2 4 2 20 0.6020600 64 FALSE
## 5 ee 5 1 1 5 3 25 0.6989700 125 FALSE
## 6 ff 6 2 2 1 3 30 0.7781513 216 TRUE
## 7 gg 7 2 1 2 4 35 0.8450980 343 TRUE
## 8 hh 8 2 2 3 4 40 0.9030900 512 FALSE
## 9 ii 9 3 1 4 5 45 0.9542425 729 FALSE
## 10 jj 10 3 2 5 5 50 1.0000000 1000 FALSE
A list…
## [1] 1 2 3 4 5 6 7 8 9 10
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 1 11 21 31 41 51 61 71 81 91
## [2,] 2 12 22 32 42 52 62 72 82 92
## [3,] 3 13 23 33 43 53 63 73 83 93
## [4,] 4 14 24 34 44 54 64 74 84 94
## [5,] 5 15 25 35 45 55 65 75 85 95
## [6,] 6 16 26 36 46 56 66 76 86 96
## [7,] 7 17 27 37 47 57 67 77 87 97
## [8,] 8 18 28 38 48 58 68 78 88 98
## [9,] 9 19 29 39 49 59 69 79 89 99
## [10,] 10 20 30 40 50 60 70 80 90 100
## x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## 1 aa 1 1 1 1 1 5 0.0000000 1 TRUE
## 2 bb 2 1 2 2 1 10 0.3010300 8 TRUE
## 3 cc 3 1 1 3 2 15 0.4771213 27 TRUE
## 4 dd 4 1 2 4 2 20 0.6020600 64 FALSE
## 5 ee 5 1 1 5 3 25 0.6989700 125 FALSE
## 6 ff 6 2 2 1 3 30 0.7781513 216 TRUE
## 7 gg 7 2 1 2 4 35 0.8450980 343 TRUE
## 8 hh 8 2 2 3 4 40 0.9030900 512 FALSE
## 9 ii 9 3 1 4 5 45 0.9542425 729 FALSE
## 10 jj 10 3 2 5 5 50 1.0000000 1000 FALSE
Selecting Data
## [1] 5
## [1] 1
## [1] 1
## [1] 1 1 1 1 1 2 2 2 3 3
## [1] 1 1 1 1 1 2 2 2 3 3
## x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
## 3 cc 3 1 1 3 2 15 0.4771213 27 TRUE
## x4 x5
## 2 2 2
## 4 2 4
## [1] "aa" "bb" "cc" "dd" "ee" "ff" "gg" "hh" "ii" "jj"
regexpr
xx <- data.frame(Name = c("Item 1 (detail 1)",
"Item 20 (detail 20)",
"Item 300 (detail 300)"),
Item = NA,
Detail = NA)
xx$Detail <- substr(xx$Name, regexpr("\\(", xx$Name)+1, regexpr("\\)", xx$Name)-1)
xx$Item <- substr(xx$Name, 1, regexpr("\\(", xx$Name)-2)
xx## Name Item Detail
## 1 Item 1 (detail 1) Item 1 detail 1
## 2 Item 20 (detail 20) Item 20 detail 20
## 3 Item 300 (detail 300) Item 300 detail 300
Data Formats
Data can also be saved in many formats:
- numeric
- integer
- character
- factor
- logical
## [1] "1" "1" "1" "1" "1" "2" "2" "2" "3" "3"
## [1] 1 1 1 1 1 2 2 2 3 3
## [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 1 2 3
## [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 3 2 1
## [1] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
## [1] 1 1 1 0 0 1 1 0 0 0
## [1] 5
Internal structure of an object can be checked with
str()
## num [1:10] 1 2 3 4 5 6 7 8 9 10
## int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
## 'data.frame': 10 obs. of 10 variables:
## $ x1 : chr "aa" "bb" "cc" "dd" ...
## $ x2 : int 1 2 3 4 5 6 7 8 9 10
## $ x3 : Factor w/ 3 levels "3","2","1": 3 3 3 3 3 2 2 2 1 1
## $ x4 : num 1 2 1 2 1 2 1 2 1 2
## $ x5 : int 1 2 3 4 5 1 2 3 4 5
## $ x6 : int 1 1 2 2 3 3 4 4 5 5
## $ x7 : num 5 10 15 20 25 30 35 40 45 50
## $ x8 : num 0 0.301 0.477 0.602 0.699 ...
## $ x9 : num 1 8 27 64 125 216 343 512 729 1000
## $ x10: logi TRUE TRUE TRUE FALSE FALSE TRUE ...
## List of 3
## $ : num [1:10] 1 2 3 4 5 6 7 8 9 10
## $ : int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
## $ :'data.frame': 10 obs. of 10 variables:
## ..$ x1 : chr [1:10] "aa" "bb" "cc" "dd" ...
## ..$ x2 : int [1:10] 1 2 3 4 5 6 7 8 9 10
## ..$ x3 : num [1:10] 1 1 1 1 1 2 2 2 3 3
## ..$ x4 : num [1:10] 1 2 1 2 1 2 1 2 1 2
## ..$ x5 : int [1:10] 1 2 3 4 5 1 2 3 4 5
## ..$ x6 : int [1:10] 1 1 2 2 3 3 4 4 5 5
## ..$ x7 : num [1:10] 5 10 15 20 25 30 35 40 45 50
## ..$ x8 : num [1:10] 0 0.301 0.477 0.602 0.699 ...
## ..$ x9 : num [1:10] 1 8 27 64 125 216 343 512 729 1000
## ..$ x10: logi [1:10] TRUE TRUE TRUE FALSE FALSE TRUE ...
Packages
Additional libraries can be installed and loaded for use.
library(scales)
xx <- data.frame(Values = 1:10)
xx$Rescaled <- rescale(x = xx$Values, to = c(1,30))
xx## Values Rescaled
## 1 1 1.000000
## 2 2 4.222222
## 3 3 7.444444
## 4 4 10.666667
## 5 5 13.888889
## 6 6 17.111111
## 7 7 20.333333
## 8 8 23.555556
## 9 9 26.777778
## 10 10 30.000000
libraries can also be used without having to load them
## [1] 1.000000 4.222222 7.444444 10.666667 13.888889 17.111111 20.333333 23.555556 26.777778 30.000000
Data Wrangling
R for Data Science - https://r4ds.had.co.nz/
xx <- data.frame(Group = c("X","X","Y","Y","Y","X","X","X","Y","Y"),
Data1 = 1:10,
Data2 = seq(10, 100, by = 10))
xx$NewData1 <- xx$Data1 + xx$Data2
xx$NewData2 <- xx$Data1 * 1000
xx## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## 5 Y 5 50 55 5000
## 6 X 6 60 66 6000
## 7 X 7 70 77 7000
## 8 X 8 80 88 8000
## 9 Y 9 90 99 9000
## 10 Y 10 100 110 10000
## [1] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## Group Data2 NewData1
## 1 X 10 11
## 2 X 20 22
## 6 X 60 66
## 7 X 70 77
## 8 X 80 88
Data wrangling with tidyverse and pipes
(%>%)
library(tidyverse) # install.packages("tidyverse")
xx <- data.frame(Group = c("X","X","Y","Y","Y","Y","Y","X","X","X")) %>%
mutate(Data1 = 1:10,
Data2 = seq(10, 100, by = 10),
NewData1 = Data1 + Data2,
NewData2 = Data1 * 1000)
xx## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## 5 Y 5 50 55 5000
## 6 Y 6 60 66 6000
## 7 Y 7 70 77 7000
## 8 X 8 80 88 8000
## 9 X 9 90 99 9000
## 10 X 10 100 110 10000
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## Group Data1 Data2 NewData1 NewData2
## 1 X 1 10 11 1000
## 2 X 2 20 22 2000
## 3 Y 3 30 33 3000
## 4 Y 4 40 44 4000
## Group NewColName NewData1
## 1 X 10 11
## 2 X 20 22
## 3 X 80 88
## 4 X 90 99
## 5 X 100 110
xs <- xx %>%
group_by(Group) %>%
summarise(Data2_mean = mean(Data2),
Data2_sd = sd(Data2),
NewData2_mean = mean(NewData2),
NewData2_sd = sd(NewData2))
xs## # A tibble: 2 × 5
## Group Data2_mean Data2_sd NewData2_mean NewData2_sd
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 X 60 41.8 6000 4183.
## 2 Y 50 15.8 5000 1581.
## Group Data1 Data2 NewData1 NewData2 Data2_mean Data2_sd NewData2_mean NewData2_sd
## 1 X 1 10 11 1000 60 41.83300 6000 4183.300
## 2 X 2 20 22 2000 60 41.83300 6000 4183.300
## 3 Y 3 30 33 3000 50 15.81139 5000 1581.139
## 4 Y 4 40 44 4000 50 15.81139 5000 1581.139
## 5 Y 5 50 55 5000 50 15.81139 5000 1581.139
## 6 Y 6 60 66 6000 50 15.81139 5000 1581.139
## 7 Y 7 70 77 7000 50 15.81139 5000 1581.139
## 8 X 8 80 88 8000 60 41.83300 6000 4183.300
## 9 X 9 90 99 9000 60 41.83300 6000 4183.300
## 10 X 10 100 110 10000 60 41.83300 6000 4183.300
Read/Write data
For excel sheets, the package readxl can be used to read
in sheets of data.
library(readxl) # install.packages("readxl")
xx <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data")Tidy Data
- Tutorial 1 - https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
- Tutorial 2 - https://r4ds.had.co.nz/tidy-data.html
yy <- xx %>%
group_by(Name, Location) %>%
summarise(Mean_DTF = round(mean(DTF),1)) %>%
arrange(Location)
yy## # A tibble: 9 × 3
## # Groups: Name [3]
## Name Location Mean_DTF
## <chr> <chr> <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh 86.7
## 2 ILL 618 AGL Jessore, Bangladesh 79.3
## 3 Laird AGL Jessore, Bangladesh 76.8
## 4 CDC Maxim AGL Metaponto, Italy 134.
## 5 ILL 618 AGL Metaponto, Italy 138.
## 6 Laird AGL Metaponto, Italy 137.
## 7 CDC Maxim AGL Saskatoon, Canada 52.5
## 8 ILL 618 AGL Saskatoon, Canada 47
## 9 Laird AGL Saskatoon, Canada 56.8
## # A tibble: 3 × 4
## # Groups: Name [3]
## Name `Jessore, Bangladesh` `Metaponto, Italy` `Saskatoon, Canada`
## <chr> <dbl> <dbl> <dbl>
## 1 CDC Maxim AGL 86.7 134. 52.5
## 2 ILL 618 AGL 79.3 138. 47
## 3 Laird AGL 76.8 137. 56.8
## # A tibble: 9 × 3
## # Groups: Name [3]
## Name TraitName Value
## <chr> <chr> <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh 86.7
## 2 ILL 618 AGL Jessore, Bangladesh 79.3
## 3 Laird AGL Jessore, Bangladesh 76.8
## 4 CDC Maxim AGL Metaponto, Italy 134.
## 5 ILL 618 AGL Metaponto, Italy 138.
## 6 Laird AGL Metaponto, Italy 137.
## 7 CDC Maxim AGL Saskatoon, Canada 52.5
## 8 ILL 618 AGL Saskatoon, Canada 47
## 9 Laird AGL Saskatoon, Canada 56.8
## # A tibble: 3 × 4
## TraitName `CDC Maxim AGL` `ILL 618 AGL` `Laird AGL`
## <chr> <dbl> <dbl> <dbl>
## 1 Jessore, Bangladesh 86.7 79.3 76.8
## 2 Metaponto, Italy 134. 138. 137.
## 3 Saskatoon, Canada 52.5 47 56.8
Base Plotting
We will start with some basic plotting using the base function
plot()
Now lets create some random and normally distributed data to make some more complicated plots
# 100 random uniformly distributed numbers ranging from 0 - 100
ru <- runif(100, min = 0, max = 100)
ru## [1] 77.955542 11.500712 83.808264 13.590352 61.602133 65.456872 26.007050 95.827169 15.427078 46.212959 7.689412 48.380180
## [13] 53.704368 60.189511 57.831412 90.801681 97.825495 97.344380 17.778464 26.888250 68.128608 44.120768 99.086893 70.800787
## [25] 19.419187 66.051083 83.812064 73.318440 44.994169 99.138394 16.479209 84.006605 74.825504 91.363871 71.786364 76.612428
## [37] 30.145420 73.601058 49.678283 45.885326 9.733159 7.941188 24.188991 67.758413 11.956815 28.084666 97.684090 58.939348
## [49] 60.973496 21.663354 38.821671 87.521277 72.548747 98.792405 92.435910 36.227708 61.106879 50.488112 66.959302 11.463790
## [61] 20.360123 82.203008 31.792644 39.374770 15.317871 30.721653 54.860809 76.895760 27.133157 63.172415 39.492975 87.844655
## [73] 84.129339 11.750550 29.894948 10.195082 60.431468 25.606413 58.121892 40.693838 17.229421 28.016552 49.933204 15.620730
## [85] 36.081132 9.672547 38.295660 19.501801 51.145729 70.523001 3.264486 60.877702 50.510931 17.044777 81.340145 40.663133
## [97] 45.847670 96.436729 96.686758 96.945220
## [1] 91 11 42 86 41 76 60 2 74 45 4 65 9 84 31 94 81 19 25 88 61 50 43 78 7 20 69 82 46 75 37
## [32] 66 63 85 56 87 51 64 71 96 80 22 29 97 40 10 12 39 83 58 93 89 13 67 15 79 48 14 77 92 49 57
## [63] 5 70 6 26 59 44 21 90 24 35 53 28 38 33 36 68 1 95 62 3 27 32 73 52 72 16 34 55 8 98 99
## [94] 100 18 47 17 54 23 30
## [1] 3.264486 7.689412 7.941188 9.672547 9.733159 10.195082 11.463790 11.500712 11.750550 11.956815 13.590352 15.317871
## [13] 15.427078 15.620730 16.479209 17.044777 17.229421 17.778464 19.419187 19.501801 20.360123 21.663354 24.188991 25.606413
## [25] 26.007050 26.888250 27.133157 28.016552 28.084666 29.894948 30.145420 30.721653 31.792644 36.081132 36.227708 38.295660
## [37] 38.821671 39.374770 39.492975 40.663133 40.693838 44.120768 44.994169 45.847670 45.885326 46.212959 48.380180 49.678283
## [49] 49.933204 50.488112 50.510931 51.145729 53.704368 54.860809 57.831412 58.121892 58.939348 60.189511 60.431468 60.877702
## [61] 60.973496 61.106879 61.602133 63.172415 65.456872 66.051083 66.959302 67.758413 68.128608 70.523001 70.800787 71.786364
## [73] 72.548747 73.318440 73.601058 74.825504 76.612428 76.895760 77.955542 81.340145 82.203008 83.808264 83.812064 84.006605
## [85] 84.129339 87.521277 87.844655 90.801681 91.363871 92.435910 95.827169 96.436729 96.686758 96.945220 97.344380 97.684090
## [97] 97.825495 98.792405 99.086893 99.138394
# 100 normally distributed numbers with a mean of 50 and sd of 10
nd <- rnorm(100, mean = 50, sd = 10)
nd## [1] 58.56821 48.82122 40.45125 52.08551 67.63632 53.91211 40.37024 24.95667 25.03670 47.93272 52.21551 57.14317 54.96627 50.09210
## [15] 44.61355 38.76410 35.50646 40.18672 57.95131 37.35368 55.14034 39.76343 43.22765 37.07241 35.54855 48.59859 63.65803 64.18831
## [29] 55.36205 41.86905 39.87545 50.75273 39.68303 58.51317 33.75573 28.71322 63.83693 49.77790 53.70560 46.95498 54.79827 59.50234
## [43] 42.70814 53.53105 48.69531 45.55252 64.32098 51.60002 74.99683 43.43910 72.54050 43.50074 55.04756 44.61487 50.20801 56.12211
## [57] 62.30090 49.86129 50.04554 50.50511 43.31090 53.09680 44.16439 42.07133 47.68091 41.39507 70.52279 49.80312 57.34241 61.94792
## [71] 35.25084 53.84113 39.33499 62.45160 46.91453 45.17165 45.01224 46.39617 64.21279 51.54442 54.86606 61.09375 45.70885 33.33218
## [85] 54.94171 65.35732 32.28801 48.51578 56.33006 43.82413 62.56015 54.16926 40.60136 36.99236 56.85115 52.21561 43.83721 63.66138
## [99] 33.84807 49.79951
## [1] 24.95667 25.03670 28.71322 32.28801 33.33218 33.75573 33.84807 35.25084 35.50646 35.54855 36.99236 37.07241 37.35368 38.76410
## [15] 39.33499 39.68303 39.76343 39.87545 40.18672 40.37024 40.45125 40.60136 41.39507 41.86905 42.07133 42.70814 43.22765 43.31090
## [29] 43.43910 43.50074 43.82413 43.83721 44.16439 44.61355 44.61487 45.01224 45.17165 45.55252 45.70885 46.39617 46.91453 46.95498
## [43] 47.68091 47.93272 48.51578 48.59859 48.69531 48.82122 49.77790 49.79951 49.80312 49.86129 50.04554 50.09210 50.20801 50.50511
## [57] 50.75273 51.54442 51.60002 52.08551 52.21551 52.21561 53.09680 53.53105 53.70560 53.84113 53.91211 54.16926 54.79827 54.86606
## [71] 54.94171 54.96627 55.04756 55.14034 55.36205 56.12211 56.33006 56.85115 57.14317 57.34241 57.95131 58.51317 58.56821 59.50234
## [85] 61.09375 61.94792 62.30090 62.45160 62.56015 63.65803 63.66138 63.83693 64.18831 64.21279 64.32098 65.35732 67.63632 70.52279
## [99] 72.54050 74.99683
ggplot2
Lets be honest, the base plots are ugly! The ggplot2
package gives the user to create a better, more visually appealing
plots. Additional packages such as ggbeeswarm and
ggrepel also contain useful functions to add to the
functionality of ggplot2.
- ggplot2 - https://ggplot2.tidyverse.org/
- Tutorial 1 - http://r-statistics.co/ggplot2-Tutorial-With-R.html
- Tutorial 2 - https://www.statsandr.com/blog/graphics-in-r-with-ggplot2/
- The R Graph Gallery - https://www.r-graph-gallery.com/ggplot2-package.html
xx <- data.frame(data = c(rnorm(50, mean = 40, sd = 10),
rnorm(50, mean = 60, sd = 5)),
group = factor(rep(1:2, each = 50)),
label = c("Label1", rep(NA, 49), "Label2", rep(NA, 49)))
mp <- ggplot(xx, aes(x = data, fill = group))
mp + geom_histogram(color = "black")mp2 <- mp + geom_violin() +
geom_boxplot(width = 0.1, fill = "white") +
geom_beeswarm(alpha = 0.5)
library(ggrepel)
mp2 + geom_text_repel(aes(label = label), nudge_x = 0.4)library(ggpubr)
ggarrange(mp1, mp2, ncol = 2, widths = c(2,1),
common.legend = T, legend = "bottom")Statistics
- Handbook of Biological Statistics - http://biostathandbook.com/
- R Companion for ^ - https://rcompanion.org/rcompanion/a_02.html
# Prep data
lev_Loc <- c("Saskatoon, Canada", "Jessore, Bangladesh", "Metaponto, Italy")
lev_Name <- c("ILL 618 AGL", "CDC Maxim AGL", "Laird AGL")
dd <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data") %>%
mutate(Location = factor(Location, levels = lev_Loc),
Name = factor(Name, levels = lev_Name))
xx <- dd %>%
group_by(Name, Location) %>%
summarise(Mean_DTF = mean(DTF))
xx %>% spread(Location, Mean_DTF)## # A tibble: 3 × 4
## # Groups: Name [3]
## Name `Saskatoon, Canada` `Jessore, Bangladesh` `Metaponto, Italy`
## <fct> <dbl> <dbl> <dbl>
## 1 ILL 618 AGL 47 79.3 138.
## 2 CDC Maxim AGL 52.5 86.7 134.
## 3 Laird AGL 56.8 76.8 137.
# Plot
mp1 <- ggplot(dd, aes(x = Location, y = DTF, color = Name, shape = Name)) +
geom_point(size = 2, alpha = 0.7, position = position_dodge(width=0.5))
mp2 <- ggplot(xx, aes(x = Location, y = Mean_DTF,
color = Name, group = Name, shape = Name)) +
geom_point(size = 2.5, alpha = 0.7) +
geom_line(size = 1, alpha = 0.7) +
theme(legend.position = "top")
ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "top")From first glace, it is clear there are differences between genotypes, locations, and genotype x environment (GxE) interactions. Now let’s do a few statistical tests.
## Df Sum Sq Mean Sq F value Pr(>F)
## Name 2 88 44 3.476 0.0395 *
## Location 2 65863 32932 2598.336 < 2e-16 ***
## Name:Location 4 560 140 11.044 2.52e-06 ***
## Residuals 45 570 13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
As expected, an ANOVA shows statistical significance for genotype (p-value = 0.0395), Location (p-value < 2e-16) and GxE interactions (p-value < 2.52e-06). However, all this tells us is that one genotype is different from the rest, one location is different from the others and that there is GxE interactions. If we want to be more specific, would need to do some multiple comparison tests.
If we only have two things to compare, we could do a t-test.
xx <- dd %>%
filter(Location %in% c("Saskatoon, Canada", "Jessore, Bangladesh")) %>%
spread(Location, DTF)
t.test(x = xx$`Saskatoon, Canada`, y = xx$`Jessore, Bangladesh`)##
## Welch Two Sample t-test
##
## data: xx$`Saskatoon, Canada` and xx$`Jessore, Bangladesh`
## t = -17.521, df = 32.701, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -32.18265 -25.48402
## sample estimates:
## mean of x mean of y
## 52.11111 80.94444
DTF in Saskatoon, Canada is significantly different (p-value < 2.2e-16) from DTF in Jessore, Bangladesh.
xx <- dd %>%
filter(Name %in% c("ILL 618 AGL", "Laird AGL"),
Location == "Metaponto, Italy") %>%
spread(Name, DTF)
t.test(x = xx$`ILL 618 AGL`, y = xx$`Laird AGL`)##
## Welch Two Sample t-test
##
## data: xx$`ILL 618 AGL` and xx$`Laird AGL`
## t = 0.38008, df = 8.0564, p-value = 0.7137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -5.059739 7.059739
## sample estimates:
## mean of x mean of y
## 137.8333 136.8333
DTF between ILL 618 AGL and Laird AGL are not significantly different (p-value = 0.7137) in Metaponto, Italy.
pch Plot
xx <- data.frame(x = rep(1:6, times = 5, length.out = 26),
y = rep(5:1, each = 6, length.out = 26),
pch = 0:25)
mp <- ggplot(xx, aes(x = x, y = y, shape = as.factor(pch))) +
geom_point(color = "darkred", fill = "darkblue", size = 5) +
geom_text(aes(label = pch), nudge_x = -0.25) +
scale_shape_manual(values = xx$pch) +
scale_x_continuous(breaks = 6:1) +
scale_y_continuous(breaks = 6:1) +
theme_void() +
theme(legend.position = "none",
plot.title = element_text(hjust = 0.5),
plot.subtitle = element_text(hjust = 0.5),
axis.text = element_blank(),
axis.ticks = element_blank()) +
labs(title = "Plot symbols in R (pch)",
subtitle = "color = \"darkred\", fill = \"darkblue\"",
x = NULL, y = NULL)
ggsave("pch.png", mp, width = 4.5, height = 3, bg = "white")R Markdown
Tutorials on how to create an R markdown document like this one can be found here: