dblogr/

R Tutorial

An introduction to R


Introduction

This tutorial is will introduce the reader to , a free, open-source statistical computing environment often used with RStudio, a integrated development environment for .

R Project Logo
R Project Logo

Calculator

can be used as a super awesome calculator

# 5 + 3 = 8
5 + 3 
## [1] 8
# 24 / (1 + 2) = 8
24 / (1 + 2) 
## [1] 8
# 2 * 2 * 2 = 8
2^3 
## [1] 8
# 8 * 8 = 64
sqrt(64) 
## [1] 8
# -log10(0.05 / 5000000) = 8
-log10(0.05 / 5000000) 
## [1] 8

Functions

has many useful built in functions

1:10
##  [1]  1  2  3  4  5  6  7  8  9 10
as.character(1:10)
##  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"
rep(1:2, times = 5)
##  [1] 1 2 1 2 1 2 1 2 1 2
rep(1:5, times = 2)
##  [1] 1 2 3 4 5 1 2 3 4 5
rep(1:5, each = 2)
##  [1] 1 1 2 2 3 3 4 4 5 5
rep(1:5, length.out = 7)
## [1] 1 2 3 4 5 1 2
seq(5, 50, by = 5)
##  [1]  5 10 15 20 25 30 35 40 45 50
seq(5, 50, length.out = 5)
## [1]  5.00 16.25 27.50 38.75 50.00
paste(1:10, 20:30, sep = "-")
##  [1] "1-20"  "2-21"  "3-22"  "4-23"  "5-24"  "6-25"  "7-26"  "8-27"  "9-28"  "10-29" "1-30"
paste(1:10, collapse = "-")
## [1] "1-2-3-4-5-6-7-8-9-10"
paste0("x", 1:10)
##  [1] "x1"  "x2"  "x3"  "x4"  "x5"  "x6"  "x7"  "x8"  "x9"  "x10"
min(1:10)
## [1] 1
max(1:10)
## [1] 10
range(1:10)
## [1]  1 10
mean(1:10)
## [1] 5.5
sd(1:10)
## [1] 3.02765

Custom Functions

Users can also create their own functions

customFunction1 <- function(x, y) {
  z <- 100 * x / (x + y)
  paste(z, "%")
}
customFunction1(x = 10, y = 90)
## [1] "10 %"
customFunction2 <- function(x) {
  mymin <- mean(x - sd(x))
  mymax <- mean(x) + sd(x)
  print(paste("Min =", mymin))
  print(paste("Max =", mymax))
}
customFunction2(x = 1:10)
## [1] "Min = 2.47234964590251"
## [1] "Max = 8.52765035409749"

for loops and if else statements

xx <- NULL #creates and empty object
for(i in 1:10) {
  xx[i] <- i*3
}
xx
##  [1]  3  6  9 12 15 18 21 24 27 30
xx %% 2 #gives the remainder when divided by 2
##  [1] 1 0 1 0 1 0 1 0 1 0
for(i in 1:length(xx)) {
  if((xx[i] %% 2) == 0) {
    print(paste(xx[i],"is Even"))
  } else { 
      print(paste(xx[i],"is Odd")) 
    }
}
## [1] "3 is Odd"
## [1] "6 is Even"
## [1] "9 is Odd"
## [1] "12 is Even"
## [1] "15 is Odd"
## [1] "18 is Even"
## [1] "21 is Odd"
## [1] "24 is Even"
## [1] "27 is Odd"
## [1] "30 is Even"
# or
ifelse(xx %% 2 == 0, "Even", "Odd")
##  [1] "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even"
paste(xx, ifelse(xx %% 2 == 0, "is Even", "is Odd"))
##  [1] "3 is Odd"   "6 is Even"  "9 is Odd"   "12 is Even" "15 is Odd"  "18 is Even" "21 is Odd"  "24 is Even" "27 is Odd"  "30 is Even"

Objects

Information can be stored in user defined objects, in multiple forms:

  • c(): a string of values
  • matrix(): a two dimensional matrix in one format
  • data.frame(): a two dimensional matrix where each column can be a different format
  • list():

A string…

xc <- 1:10
xc
##  [1]  1  2  3  4  5  6  7  8  9 10
xc <- c(1,2,3,4,5,6,7,8,9,10)
xc
##  [1]  1  2  3  4  5  6  7  8  9 10

A matrix…

xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = T)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1    2    3    4    5    6    7    8    9    10
##  [2,]   11   12   13   14   15   16   17   18   19    20
##  [3,]   21   22   23   24   25   26   27   28   29    30
##  [4,]   31   32   33   34   35   36   37   38   39    40
##  [5,]   41   42   43   44   45   46   47   48   49    50
##  [6,]   51   52   53   54   55   56   57   58   59    60
##  [7,]   61   62   63   64   65   66   67   68   69    70
##  [8,]   71   72   73   74   75   76   77   78   79    80
##  [9,]   81   82   83   84   85   86   87   88   89    90
## [10,]   91   92   93   94   95   96   97   98   99   100
xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = F)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100

A data frame…

xd <- data.frame(
  x1 = c("aa","bb","cc","dd","ee",
         "ff","gg","hh","ii","jj"),
  x2 = 1:10,
  x3 = c(1,1,1,1,1,2,2,2,3,3),
  x4 = rep(c(1,2), times = 5),
  x5 = rep(1:5, times = 2),
  x6 = rep(1:5, each = 2),
  x7 = seq(5, 50, by = 5),
  x8 = log10(1:10),
  x9 = (1:10)^3,
  x10 = c(T,T,T,F,F,T,T,F,F,F)
)
xd
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

A list…

xl <- list(xc, xm, xd)
xl[[1]]
##  [1]  1  2  3  4  5  6  7  8  9 10
xl[[2]]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100
xl[[3]]
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

Selecting Data

xc[5] # 5th element in xc
## [1] 5
xd$x3[5] # 5th element in col "x3"
## [1] 1
xd[5,"x3"] # row 5, col "x3"
## [1] 1
xd$x3 # all of col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[,"x3"] # all rows, col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[3,] # row 3, all cols
##   x1 x2 x3 x4 x5 x6 x7        x8 x9  x10
## 3 cc  3  1  1  3  2 15 0.4771213 27 TRUE
xd[c(2,4),c("x4","x5")] # rows 2 & 4, cols "x4" & "x5"
##   x4 x5
## 2  2  2
## 4  2  4
xl[[3]]$x1 # 3rd object in the list, col "x1
##  [1] "aa" "bb" "cc" "dd" "ee" "ff" "gg" "hh" "ii" "jj"

regexpr

xx <- data.frame(Name = c("Item 1 (detail 1)",
                          "Item 20 (detail 20)",
                          "Item 300 (detail 300)"),
                 Item = NA,
                 Detail = NA)
xx$Detail <- substr(xx$Name, regexpr("\\(", xx$Name)+1, regexpr("\\)", xx$Name)-1)
xx$Item <- substr(xx$Name, 1, regexpr("\\(", xx$Name)-2)
xx
##                    Name     Item     Detail
## 1     Item 1 (detail 1)   Item 1   detail 1
## 2   Item 20 (detail 20)  Item 20  detail 20
## 3 Item 300 (detail 300) Item 300 detail 300

Data Formats

Data can also be saved in many formats:

  • numeric
  • integer
  • character
  • factor
  • logical
xd$x3 <- as.character(xd$x3)
xd$x3
##  [1] "1" "1" "1" "1" "1" "2" "2" "2" "3" "3"
xd$x3 <- as.numeric(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
xd$x3 <- as.factor(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 1 2 3
xd$x3 <- factor(xd$x3, levels = c("3","2","1"))
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 3 2 1
xd$x10
##  [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
as.numeric(xd$x10) # TRUE = 1, FALSE = 0
##  [1] 1 1 1 0 0 1 1 0 0 0
sum(xd$x10)
## [1] 5

Internal structure of an object can be checked with str()

str(xc) # c()
##  num [1:10] 1 2 3 4 5 6 7 8 9 10
str(xm) # matrix()
##  int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
str(xd) # data.frame()
## 'data.frame':    10 obs. of  10 variables:
##  $ x1 : chr  "aa" "bb" "cc" "dd" ...
##  $ x2 : int  1 2 3 4 5 6 7 8 9 10
##  $ x3 : Factor w/ 3 levels "3","2","1": 3 3 3 3 3 2 2 2 1 1
##  $ x4 : num  1 2 1 2 1 2 1 2 1 2
##  $ x5 : int  1 2 3 4 5 1 2 3 4 5
##  $ x6 : int  1 1 2 2 3 3 4 4 5 5
##  $ x7 : num  5 10 15 20 25 30 35 40 45 50
##  $ x8 : num  0 0.301 0.477 0.602 0.699 ...
##  $ x9 : num  1 8 27 64 125 216 343 512 729 1000
##  $ x10: logi  TRUE TRUE TRUE FALSE FALSE TRUE ...
str(xl) # list()
## List of 3
##  $ : num [1:10] 1 2 3 4 5 6 7 8 9 10
##  $ : int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
##  $ :'data.frame':    10 obs. of  10 variables:
##   ..$ x1 : chr [1:10] "aa" "bb" "cc" "dd" ...
##   ..$ x2 : int [1:10] 1 2 3 4 5 6 7 8 9 10
##   ..$ x3 : num [1:10] 1 1 1 1 1 2 2 2 3 3
##   ..$ x4 : num [1:10] 1 2 1 2 1 2 1 2 1 2
##   ..$ x5 : int [1:10] 1 2 3 4 5 1 2 3 4 5
##   ..$ x6 : int [1:10] 1 1 2 2 3 3 4 4 5 5
##   ..$ x7 : num [1:10] 5 10 15 20 25 30 35 40 45 50
##   ..$ x8 : num [1:10] 0 0.301 0.477 0.602 0.699 ...
##   ..$ x9 : num [1:10] 1 8 27 64 125 216 343 512 729 1000
##   ..$ x10: logi [1:10] TRUE TRUE TRUE FALSE FALSE TRUE ...

Packages

Additional libraries can be installed and loaded for use.

install.packages("scales")
library(scales)
xx <- data.frame(Values = 1:10)
xx$Rescaled <- rescale(x = xx$Values, to = c(1,30))
xx
##    Values  Rescaled
## 1       1  1.000000
## 2       2  4.222222
## 3       3  7.444444
## 4       4 10.666667
## 5       5 13.888889
## 6       6 17.111111
## 7       7 20.333333
## 8       8 23.555556
## 9       9 26.777778
## 10     10 30.000000

libraries can also be used without having to load them

scales::rescale(1:10, to = c(1,30))
##  [1]  1.000000  4.222222  7.444444 10.666667 13.888889 17.111111 20.333333 23.555556 26.777778 30.000000

Data Wrangling

R for Data Science - https://r4ds.had.co.nz/

xx <- data.frame(Group = c("X","X","Y","Y","Y","X","X","X","Y","Y"),
                 Data1 = 1:10, 
                 Data2 = seq(10, 100, by = 10))
xx$NewData1 <- xx$Data1 + xx$Data2
xx$NewData2 <- xx$Data1 * 1000
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      X     6    60       66     6000
## 7      X     7    70       77     7000
## 8      X     8    80       88     8000
## 9      Y     9    90       99     9000
## 10     Y    10   100      110    10000
xx$Data1 < 5 # which are less than 5
##  [1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
xx[xx$Data1 < 5,]
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx[xx$Group == "X", c("Group","Data2","NewData1")]
##   Group Data2 NewData1
## 1     X    10       11
## 2     X    20       22
## 6     X    60       66
## 7     X    70       77
## 8     X    80       88

Data wrangling with tidyverse and pipes (%>%)

library(tidyverse) # install.packages("tidyverse")
xx <- data.frame(Group = c("X","X","Y","Y","Y","Y","Y","X","X","X")) %>%
  mutate(Data1 = 1:10, 
         Data2 = seq(10, 100, by = 10),
         NewData1 = Data1 + Data2,
         NewData2 = Data1 * 1000)
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      Y     6    60       66     6000
## 7      Y     7    70       77     7000
## 8      X     8    80       88     8000
## 9      X     9    90       99     9000
## 10     X    10   100      110    10000
filter(xx, Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Group == "X") %>% 
  select(Group, NewColName=Data2, NewData1)
##   Group NewColName NewData1
## 1     X         10       11
## 2     X         20       22
## 3     X         80       88
## 4     X         90       99
## 5     X        100      110
xs <- xx %>% 
  group_by(Group) %>% 
  summarise(Data2_mean = mean(Data2),
            Data2_sd = sd(Data2),
            NewData2_mean = mean(NewData2),
            NewData2_sd = sd(NewData2))
xs
## # A tibble: 2 × 5
##   Group Data2_mean Data2_sd NewData2_mean NewData2_sd
##   <chr>      <dbl>    <dbl>         <dbl>       <dbl>
## 1 X             60     41.8          6000       4183.
## 2 Y             50     15.8          5000       1581.
xx %>% left_join(xs, by = "Group")
##    Group Data1 Data2 NewData1 NewData2 Data2_mean Data2_sd NewData2_mean NewData2_sd
## 1      X     1    10       11     1000         60 41.83300          6000    4183.300
## 2      X     2    20       22     2000         60 41.83300          6000    4183.300
## 3      Y     3    30       33     3000         50 15.81139          5000    1581.139
## 4      Y     4    40       44     4000         50 15.81139          5000    1581.139
## 5      Y     5    50       55     5000         50 15.81139          5000    1581.139
## 6      Y     6    60       66     6000         50 15.81139          5000    1581.139
## 7      Y     7    70       77     7000         50 15.81139          5000    1581.139
## 8      X     8    80       88     8000         60 41.83300          6000    4183.300
## 9      X     9    90       99     9000         60 41.83300          6000    4183.300
## 10     X    10   100      110    10000         60 41.83300          6000    4183.300

Read/Write data

xx <- read.csv("data_r_tutorial.csv")
write.csv(xx, "data_r_tutorial.csv", row.names = F)

For excel sheets, the package readxl can be used to read in sheets of data.

library(readxl) # install.packages("readxl")
xx <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data")

Tidy Data

yy <- xx %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = round(mean(DTF),1)) %>% 
  arrange(Location)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          Location            Mean_DTF
##   <chr>         <chr>                  <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh     86.7
## 2 ILL 618 AGL   Jessore, Bangladesh     79.3
## 3 Laird AGL     Jessore, Bangladesh     76.8
## 4 CDC Maxim AGL Metaponto, Italy       134. 
## 5 ILL 618 AGL   Metaponto, Italy       138. 
## 6 Laird AGL     Metaponto, Italy       137. 
## 7 CDC Maxim AGL Saskatoon, Canada       52.5
## 8 ILL 618 AGL   Saskatoon, Canada       47  
## 9 Laird AGL     Saskatoon, Canada       56.8
yy <- yy %>% spread(key = Location, value = Mean_DTF)
yy
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Jessore, Bangladesh` `Metaponto, Italy` `Saskatoon, Canada`
##   <chr>                         <dbl>              <dbl>               <dbl>
## 1 CDC Maxim AGL                  86.7               134.                52.5
## 2 ILL 618 AGL                    79.3               138.                47  
## 3 Laird AGL                      76.8               137.                56.8
yy <- yy %>% gather(key = TraitName, value = Value, 2:4)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          TraitName           Value
##   <chr>         <chr>               <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh  86.7
## 2 ILL 618 AGL   Jessore, Bangladesh  79.3
## 3 Laird AGL     Jessore, Bangladesh  76.8
## 4 CDC Maxim AGL Metaponto, Italy    134. 
## 5 ILL 618 AGL   Metaponto, Italy    138. 
## 6 Laird AGL     Metaponto, Italy    137. 
## 7 CDC Maxim AGL Saskatoon, Canada    52.5
## 8 ILL 618 AGL   Saskatoon, Canada    47  
## 9 Laird AGL     Saskatoon, Canada    56.8
yy <- yy %>% spread(key = Name, value = Value)
yy
## # A tibble: 3 × 4
##   TraitName           `CDC Maxim AGL` `ILL 618 AGL` `Laird AGL`
##   <chr>                         <dbl>         <dbl>       <dbl>
## 1 Jessore, Bangladesh            86.7          79.3        76.8
## 2 Metaponto, Italy              134.          138.        137. 
## 3 Saskatoon, Canada              52.5          47          56.8

Base Plotting

We will start with some basic plotting using the base function plot()

# A basic scatter plot
plot(x = xd$x8, y = xd$x9)

# Adjust color and shape of the points
plot(x = xd$x8, y = xd$x9, col = "darkred", pch = 0)

plot(x = xd$x8, y = xd$x9, col = xd$x4, pch = xd$x4)

# Adjust plot type 
plot(x = xd$x8, y = xd$x9, type = "line")

# Adjust linetype
plot(x = xd$x8, y = xd$x9, type = "line", lty = 2)

# Plot lines and points
plot(x = xd$x8, y = xd$x9, type = "both")

Now lets create some random and normally distributed data to make some more complicated plots

# 100 random uniformly distributed numbers ranging from 0 - 100
ru <- runif(100, min = 0, max = 100)
ru
##   [1] 61.2042893 39.7689064 13.9521759 28.4081123 13.6598447 97.9804409 73.6056065  6.4814168 68.2497993  9.7263944 72.2364904 31.3942439 41.8555448
##  [14] 19.9359410 90.9815798 22.7414373 55.0035337  2.7131098 62.1282635 89.2838776 95.7089395 72.9877678 20.6571889 69.4841886 44.1985281  0.5929114
##  [27] 68.6803246 91.4225007 43.4555991 17.0398199 39.8221208 96.2687968 59.4642483 79.4964319  4.8494825 34.2551186 12.9669302 91.2615368 67.8083411
##  [40] 80.6013199 95.3767643 39.1905881 41.8171122 53.4359741 47.2703327 62.4090139  9.9140219 20.1341233 18.3411764 48.9049925 39.7475546 46.1762091
##  [53]  6.0962067 53.3676519 57.6832347 36.7128589 62.5188201 89.7674690 41.9000128 14.4046352 16.6800538 43.5575773  6.1446742 38.8996853 40.5831043
##  [66] 62.1066399 60.6588491 99.7934446  8.7697814 58.2013789 66.9558577 64.2037522 72.0304693 36.0982484 24.3678280 30.7502283 15.9737536 80.5467682
##  [79] 52.6511838 63.1898561 69.6955991 43.0467675 26.9430080 18.8017780 59.7730986 34.3280031 11.1213031 55.6613273  4.0473881 64.3661792 98.5045705
##  [92]  3.6415696 81.3992105 25.5638150 81.9203321 99.7775411 68.9150341 79.0622749 68.5861876 23.4709892
plot(x = ru)

order(ru)
##   [1]  26  18  92  89  35  53  63   8  69  10  47  87  37   5   3  60  77  61  30  49  84  14  48  23  16 100  75  94  83   4  76  12  36  86  74  56  64  42
##  [39]  51   2  31  65  43  13  59  82  29  62  25  52  45  50  79  54  44  17  88  55  70  33  85  67   1  66  19  46  57  80  72  90  71  39   9  99  27  97
##  [77]  24  81  73  11  22   7  98  34  78  40  93  95  20  58  15  38  28  41  21  32   6  91  96  68
ru<- ru[order(ru)]
ru
##   [1]  0.5929114  2.7131098  3.6415696  4.0473881  4.8494825  6.0962067  6.1446742  6.4814168  8.7697814  9.7263944  9.9140219 11.1213031 12.9669302
##  [14] 13.6598447 13.9521759 14.4046352 15.9737536 16.6800538 17.0398199 18.3411764 18.8017780 19.9359410 20.1341233 20.6571889 22.7414373 23.4709892
##  [27] 24.3678280 25.5638150 26.9430080 28.4081123 30.7502283 31.3942439 34.2551186 34.3280031 36.0982484 36.7128589 38.8996853 39.1905881 39.7475546
##  [40] 39.7689064 39.8221208 40.5831043 41.8171122 41.8555448 41.9000128 43.0467675 43.4555991 43.5575773 44.1985281 46.1762091 47.2703327 48.9049925
##  [53] 52.6511838 53.3676519 53.4359741 55.0035337 55.6613273 57.6832347 58.2013789 59.4642483 59.7730986 60.6588491 61.2042893 62.1066399 62.1282635
##  [66] 62.4090139 62.5188201 63.1898561 64.2037522 64.3661792 66.9558577 67.8083411 68.2497993 68.5861876 68.6803246 68.9150341 69.4841886 69.6955991
##  [79] 72.0304693 72.2364904 72.9877678 73.6056065 79.0622749 79.4964319 80.5467682 80.6013199 81.3992105 81.9203321 89.2838776 89.7674690 90.9815798
##  [92] 91.2615368 91.4225007 95.3767643 95.7089395 96.2687968 97.9804409 98.5045705 99.7775411 99.7934446
plot(x = ru)

# 100 normally distributed numbers with a mean of 50 and sd of 10
nd <- rnorm(100, mean = 50, sd = 10)
nd
##   [1] 49.44544 56.83267 63.54339 67.40283 54.19943 42.23456 42.09340 46.61762 52.34267 40.25011 61.39294 50.78912 27.35205 41.28436 47.23632 42.98167
##  [17] 48.90962 71.61342 51.32195 52.48279 59.80626 57.41495 54.42993 47.02934 28.48293 51.86663 25.96488 60.73126 44.75116 52.52817 52.82446 60.58417
##  [33] 36.58585 46.13440 48.07865 45.68166 49.29576 39.04263 45.85715 35.36759 46.14480 64.04168 59.02995 48.02692 40.94741 46.98884 42.81678 50.91326
##  [49] 63.42177 49.42086 72.80148 53.20299 47.55473 36.87134 52.89731 30.25692 42.53838 53.08979 50.63873 36.36816 48.42888 48.90136 63.51166 32.29477
##  [65] 42.88033 67.94623 42.42876 42.13692 67.43031 37.72428 61.91274 61.56745 34.93742 60.79533 43.31658 52.03046 58.26214 60.35282 64.54474 44.01580
##  [81] 44.94646 45.57395 63.52879 23.06220 59.64873 40.70422 41.88680 62.20248 54.68096 46.87620 39.61788 45.56324 48.49781 50.58568 49.77021 54.11497
##  [97] 51.17786 40.51664 44.95645 50.13156
nd <- nd[order(nd)]
nd
##   [1] 23.06220 25.96488 27.35205 28.48293 30.25692 32.29477 34.93742 35.36759 36.36816 36.58585 36.87134 37.72428 39.04263 39.61788 40.25011 40.51664
##  [17] 40.70422 40.94741 41.28436 41.88680 42.09340 42.13692 42.23456 42.42876 42.53838 42.81678 42.88033 42.98167 43.31658 44.01580 44.75116 44.94646
##  [33] 44.95645 45.56324 45.57395 45.68166 45.85715 46.13440 46.14480 46.61762 46.87620 46.98884 47.02934 47.23632 47.55473 48.02692 48.07865 48.42888
##  [49] 48.49781 48.90136 48.90962 49.29576 49.42086 49.44544 49.77021 50.13156 50.58568 50.63873 50.78912 50.91326 51.17786 51.32195 51.86663 52.03046
##  [65] 52.34267 52.48279 52.52817 52.82446 52.89731 53.08979 53.20299 54.11497 54.19943 54.42993 54.68096 56.83267 57.41495 58.26214 59.02995 59.64873
##  [81] 59.80626 60.35282 60.58417 60.73126 60.79533 61.39294 61.56745 61.91274 62.20248 63.42177 63.51166 63.52879 63.54339 64.04168 64.54474 67.40283
##  [97] 67.43031 67.94623 71.61342 72.80148
plot(x = nd)

hist(x = nd)

hist(nd, breaks = 20, col = "darkgreen")

plot(x = density(nd))

boxplot(x = nd)

boxplot(x = nd, horizontal = T)


ggplot2

Lets be honest, the base plots are ugly! The ggplot2 package gives the user to create a better, more visually appealing plots. Additional packages such as ggbeeswarm and ggrepel also contain useful functions to add to the functionality of ggplot2.

library(ggplot2)
mp <- ggplot(xd, aes(x = x8, y = x9))
mp + geom_point()

mp + geom_point(aes(color = x3, shape = x3), size = 4)

mp + geom_line(size = 2)

mp + geom_line(aes(color = x3), size = 2)

mp + geom_smooth(method = "loess")

mp + geom_smooth(method = "lm")

xx <- data.frame(data = c(rnorm(50, mean = 40, sd = 10),
                          rnorm(50, mean = 60, sd = 5)),
                 group = factor(rep(1:2, each = 50)),
                 label = c("Label1", rep(NA, 49), "Label2", rep(NA, 49)))
mp <- ggplot(xx, aes(x = data, fill = group))
mp + geom_histogram(color = "black")

mp + geom_histogram(color = "black", position = "dodge")

mp1 <- mp + geom_histogram(color = "black") + facet_grid(group~.)
mp1

mp + geom_density(alpha = 0.5)

mp <- ggplot(xx, aes(x = group, y = data, fill = group))
mp + geom_boxplot(color = "black")

mp + geom_boxplot() + geom_point()

mp + geom_violin() + geom_boxplot(width = 0.1, fill = "white")

library(ggbeeswarm)
mp + geom_quasirandom()

mp + geom_quasirandom(aes(shape = group))

mp2 <- mp + geom_violin() + 
  geom_boxplot(width = 0.1, fill = "white") +
  geom_beeswarm(alpha = 0.5)
library(ggrepel)
mp2 + geom_text_repel(aes(label = label), nudge_x = 0.4)

library(ggpubr)
ggarrange(mp1, mp2, ncol = 2, widths = c(2,1),
          common.legend = T, legend = "bottom")


Statistics

# Prep data
lev_Loc  <- c("Saskatoon, Canada", "Jessore, Bangladesh", "Metaponto, Italy")
lev_Name <- c("ILL 618 AGL", "CDC Maxim AGL", "Laird AGL")
dd <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data") %>%
  mutate(Location = factor(Location, levels = lev_Loc),
         Name = factor(Name, levels = lev_Name))
xx <- dd %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = mean(DTF))
xx %>% spread(Location, Mean_DTF)
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Saskatoon, Canada` `Jessore, Bangladesh` `Metaponto, Italy`
##   <fct>                       <dbl>                 <dbl>              <dbl>
## 1 ILL 618 AGL                  47                    79.3               138.
## 2 CDC Maxim AGL                52.5                  86.7               134.
## 3 Laird AGL                    56.8                  76.8               137.
# Plot
mp1 <- ggplot(dd, aes(x = Location, y = DTF, color = Name, shape = Name)) +
  geom_point(size = 2, alpha = 0.7, position = position_dodge(width=0.5))
mp2 <- ggplot(xx, aes(x = Location, y = Mean_DTF, 
                      color = Name, group = Name, shape = Name)) +
  geom_point(size = 2.5, alpha = 0.7) + 
  geom_line(size = 1, alpha = 0.7) +
  theme(legend.position = "top")
ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "top")

From first glace, it is clear there are differences between genotypes, locations, and genotype x environment (GxE) interactions. Now let’s do a few statistical tests.

summary(aov(DTF ~ Name * Location, data = dd))
##               Df Sum Sq Mean Sq  F value   Pr(>F)    
## Name           2     88      44    3.476   0.0395 *  
## Location       2  65863   32932 2598.336  < 2e-16 ***
## Name:Location  4    560     140   11.044 2.52e-06 ***
## Residuals     45    570      13                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected, an ANOVA shows statistical significance for genotype (p-value = 0.0395), Location (p-value < 2e-16) and GxE interactions (p-value < 2.52e-06). However, all this tells us is that one genotype is different from the rest, one location is different from the others and that there is GxE interactions. If we want to be more specific, would need to do some multiple comparison tests.

If we only have two things to compare, we could do a t-test.

xx <- dd %>% 
  filter(Location %in% c("Saskatoon, Canada", "Jessore, Bangladesh")) %>%
  spread(Location, DTF)
t.test(x = xx$`Saskatoon, Canada`, y = xx$`Jessore, Bangladesh`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`Saskatoon, Canada` and xx$`Jessore, Bangladesh`
## t = -17.521, df = 32.701, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -32.18265 -25.48402
## sample estimates:
## mean of x mean of y 
##  52.11111  80.94444

DTF in Saskatoon, Canada is significantly different (p-value < 2.2e-16) from DTF in Jessore, Bangladesh.

xx <- dd %>% 
  filter(Name %in% c("ILL 618 AGL", "Laird AGL"),
         Location == "Metaponto, Italy") %>%
  spread(Name, DTF)
t.test(x = xx$`ILL 618 AGL`, y = xx$`Laird AGL`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`ILL 618 AGL` and xx$`Laird AGL`
## t = 0.38008, df = 8.0564, p-value = 0.7137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.059739  7.059739
## sample estimates:
## mean of x mean of y 
##  137.8333  136.8333

DTF between ILL 618 AGL and Laird AGL are not significantly different (p-value = 0.7137) in Metaponto, Italy.


pch Plot

xx <- data.frame(x = rep(1:6, times = 5, length.out = 26),
                 y = rep(5:1, each = 6, length.out = 26),
                 pch = 0:25)
mp <- ggplot(xx, aes(x = x, y = y, shape = as.factor(pch))) +
  geom_point(color = "darkred", fill = "darkblue", size = 5) +
  geom_text(aes(label = pch), nudge_x = -0.25) +
  scale_shape_manual(values = xx$pch) +
  scale_x_continuous(breaks = 6:1) +
  scale_y_continuous(breaks = 6:1) +
  theme_void() +
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  labs(title = "Plot symbols in R (pch)",
       subtitle = "color = \"darkred\", fill = \"darkblue\"",
       x = NULL, y = NULL)
ggsave("pch.png", mp, width = 4.5, height = 3, bg = "white")


R Markdown

Tutorials on how to create an R markdown document like this one can be found here:



dblogr/


© Derek Michael Wright