dblogr/

R Tutorial

An introduction to R


Introduction

This tutorial is will introduce the reader to , a free, open-source statistical computing environment often used with RStudio, a integrated development environment for .

R Project Logo
R Project Logo

Calculator

can be used as a super awesome calculator

# 5 + 3 = 8
5 + 3 
## [1] 8
# 24 / (1 + 2) = 8
24 / (1 + 2) 
## [1] 8
# 2 * 2 * 2 = 8
2^3 
## [1] 8
# 8 * 8 = 64
sqrt(64) 
## [1] 8
# -log10(0.05 / 5000000) = 8
-log10(0.05 / 5000000) 
## [1] 8

Functions

has many useful built in functions

1:10
##  [1]  1  2  3  4  5  6  7  8  9 10
as.character(1:10)
##  [1] "1"  "2"  "3"  "4"  "5"  "6"  "7"  "8"  "9"  "10"
rep(1:2, times = 5)
##  [1] 1 2 1 2 1 2 1 2 1 2
rep(1:5, times = 2)
##  [1] 1 2 3 4 5 1 2 3 4 5
rep(1:5, each = 2)
##  [1] 1 1 2 2 3 3 4 4 5 5
rep(1:5, length.out = 7)
## [1] 1 2 3 4 5 1 2
seq(5, 50, by = 5)
##  [1]  5 10 15 20 25 30 35 40 45 50
seq(5, 50, length.out = 5)
## [1]  5.00 16.25 27.50 38.75 50.00
paste(1:10, 20:30, sep = "-")
##  [1] "1-20"  "2-21"  "3-22"  "4-23"  "5-24"  "6-25"  "7-26"  "8-27"  "9-28"  "10-29" "1-30"
paste(1:10, collapse = "-")
## [1] "1-2-3-4-5-6-7-8-9-10"
paste0("x", 1:10)
##  [1] "x1"  "x2"  "x3"  "x4"  "x5"  "x6"  "x7"  "x8"  "x9"  "x10"
min(1:10)
## [1] 1
max(1:10)
## [1] 10
range(1:10)
## [1]  1 10
mean(1:10)
## [1] 5.5
sd(1:10)
## [1] 3.02765

Custom Functions

Users can also create their own functions

customFunction1 <- function(x, y) {
  z <- 100 * x / (x + y)
  paste(z, "%")
}
customFunction1(x = 10, y = 90)
## [1] "10 %"
customFunction2 <- function(x) {
  mymin <- mean(x - sd(x))
  mymax <- mean(x) + sd(x)
  print(paste("Min =", mymin))
  print(paste("Max =", mymax))
}
customFunction2(x = 1:10)
## [1] "Min = 2.47234964590251"
## [1] "Max = 8.52765035409749"

for loops and if else statements

xx <- NULL #creates and empty object
for(i in 1:10) {
  xx[i] <- i*3
}
xx
##  [1]  3  6  9 12 15 18 21 24 27 30
xx %% 2 #gives the remainder when divided by 2
##  [1] 1 0 1 0 1 0 1 0 1 0
for(i in 1:length(xx)) {
  if((xx[i] %% 2) == 0) {
    print(paste(xx[i],"is Even"))
  } else { 
      print(paste(xx[i],"is Odd")) 
    }
}
## [1] "3 is Odd"
## [1] "6 is Even"
## [1] "9 is Odd"
## [1] "12 is Even"
## [1] "15 is Odd"
## [1] "18 is Even"
## [1] "21 is Odd"
## [1] "24 is Even"
## [1] "27 is Odd"
## [1] "30 is Even"
# or
ifelse(xx %% 2 == 0, "Even", "Odd")
##  [1] "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even" "Odd"  "Even"
paste(xx, ifelse(xx %% 2 == 0, "is Even", "is Odd"))
##  [1] "3 is Odd"   "6 is Even"  "9 is Odd"   "12 is Even" "15 is Odd"  "18 is Even" "21 is Odd"  "24 is Even" "27 is Odd"  "30 is Even"

Objects

Information can be stored in user defined objects, in multiple forms:

  • c(): a string of values
  • matrix(): a two dimensional matrix in one format
  • data.frame(): a two dimensional matrix where each column can be a different format
  • list():

A string…

xc <- 1:10
xc
##  [1]  1  2  3  4  5  6  7  8  9 10
xc <- c(1,2,3,4,5,6,7,8,9,10)
xc
##  [1]  1  2  3  4  5  6  7  8  9 10

A matrix…

xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = T)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1    2    3    4    5    6    7    8    9    10
##  [2,]   11   12   13   14   15   16   17   18   19    20
##  [3,]   21   22   23   24   25   26   27   28   29    30
##  [4,]   31   32   33   34   35   36   37   38   39    40
##  [5,]   41   42   43   44   45   46   47   48   49    50
##  [6,]   51   52   53   54   55   56   57   58   59    60
##  [7,]   61   62   63   64   65   66   67   68   69    70
##  [8,]   71   72   73   74   75   76   77   78   79    80
##  [9,]   81   82   83   84   85   86   87   88   89    90
## [10,]   91   92   93   94   95   96   97   98   99   100
xm <- matrix(1:100, nrow = 10, ncol = 10, byrow = F)
xm
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100

A data frame…

xd <- data.frame(
  x1 = c("aa","bb","cc","dd","ee",
         "ff","gg","hh","ii","jj"),
  x2 = 1:10,
  x3 = c(1,1,1,1,1,2,2,2,3,3),
  x4 = rep(c(1,2), times = 5),
  x5 = rep(1:5, times = 2),
  x6 = rep(1:5, each = 2),
  x7 = seq(5, 50, by = 5),
  x8 = log10(1:10),
  x9 = (1:10)^3,
  x10 = c(T,T,T,F,F,T,T,F,F,F)
)
xd
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

A list…

xl <- list(xc, xm, xd)
xl[[1]]
##  [1]  1  2  3  4  5  6  7  8  9 10
xl[[2]]
##       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
##  [1,]    1   11   21   31   41   51   61   71   81    91
##  [2,]    2   12   22   32   42   52   62   72   82    92
##  [3,]    3   13   23   33   43   53   63   73   83    93
##  [4,]    4   14   24   34   44   54   64   74   84    94
##  [5,]    5   15   25   35   45   55   65   75   85    95
##  [6,]    6   16   26   36   46   56   66   76   86    96
##  [7,]    7   17   27   37   47   57   67   77   87    97
##  [8,]    8   18   28   38   48   58   68   78   88    98
##  [9,]    9   19   29   39   49   59   69   79   89    99
## [10,]   10   20   30   40   50   60   70   80   90   100
xl[[3]]
##    x1 x2 x3 x4 x5 x6 x7        x8   x9   x10
## 1  aa  1  1  1  1  1  5 0.0000000    1  TRUE
## 2  bb  2  1  2  2  1 10 0.3010300    8  TRUE
## 3  cc  3  1  1  3  2 15 0.4771213   27  TRUE
## 4  dd  4  1  2  4  2 20 0.6020600   64 FALSE
## 5  ee  5  1  1  5  3 25 0.6989700  125 FALSE
## 6  ff  6  2  2  1  3 30 0.7781513  216  TRUE
## 7  gg  7  2  1  2  4 35 0.8450980  343  TRUE
## 8  hh  8  2  2  3  4 40 0.9030900  512 FALSE
## 9  ii  9  3  1  4  5 45 0.9542425  729 FALSE
## 10 jj 10  3  2  5  5 50 1.0000000 1000 FALSE

Selecting Data

xc[5] # 5th element in xc
## [1] 5
xd$x3[5] # 5th element in col "x3"
## [1] 1
xd[5,"x3"] # row 5, col "x3"
## [1] 1
xd$x3 # all of col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[,"x3"] # all rows, col "x3"
##  [1] 1 1 1 1 1 2 2 2 3 3
xd[3,] # row 3, all cols
##   x1 x2 x3 x4 x5 x6 x7        x8 x9  x10
## 3 cc  3  1  1  3  2 15 0.4771213 27 TRUE
xd[c(2,4),c("x4","x5")] # rows 2 & 4, cols "x4" & "x5"
##   x4 x5
## 2  2  2
## 4  2  4
xl[[3]]$x1 # 3rd object in the list, col "x1
##  [1] "aa" "bb" "cc" "dd" "ee" "ff" "gg" "hh" "ii" "jj"

regexpr

xx <- data.frame(Name = c("Item 1 (detail 1)",
                          "Item 20 (detail 20)",
                          "Item 300 (detail 300)"),
                 Item = NA,
                 Detail = NA)
xx$Detail <- substr(xx$Name, regexpr("\\(", xx$Name)+1, regexpr("\\)", xx$Name)-1)
xx$Item <- substr(xx$Name, 1, regexpr("\\(", xx$Name)-2)
xx
##                    Name     Item     Detail
## 1     Item 1 (detail 1)   Item 1   detail 1
## 2   Item 20 (detail 20)  Item 20  detail 20
## 3 Item 300 (detail 300) Item 300 detail 300

Data Formats

Data can also be saved in many formats:

  • numeric
  • integer
  • character
  • factor
  • logical
xd$x3 <- as.character(xd$x3)
xd$x3
##  [1] "1" "1" "1" "1" "1" "2" "2" "2" "3" "3"
xd$x3 <- as.numeric(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
xd$x3 <- as.factor(xd$x3)
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 1 2 3
xd$x3 <- factor(xd$x3, levels = c("3","2","1"))
xd$x3
##  [1] 1 1 1 1 1 2 2 2 3 3
## Levels: 3 2 1
xd$x10
##  [1]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
as.numeric(xd$x10) # TRUE = 1, FALSE = 0
##  [1] 1 1 1 0 0 1 1 0 0 0
sum(xd$x10)
## [1] 5

Internal structure of an object can be checked with str()

str(xc) # c()
##  num [1:10] 1 2 3 4 5 6 7 8 9 10
str(xm) # matrix()
##  int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
str(xd) # data.frame()
## 'data.frame':    10 obs. of  10 variables:
##  $ x1 : chr  "aa" "bb" "cc" "dd" ...
##  $ x2 : int  1 2 3 4 5 6 7 8 9 10
##  $ x3 : Factor w/ 3 levels "3","2","1": 3 3 3 3 3 2 2 2 1 1
##  $ x4 : num  1 2 1 2 1 2 1 2 1 2
##  $ x5 : int  1 2 3 4 5 1 2 3 4 5
##  $ x6 : int  1 1 2 2 3 3 4 4 5 5
##  $ x7 : num  5 10 15 20 25 30 35 40 45 50
##  $ x8 : num  0 0.301 0.477 0.602 0.699 ...
##  $ x9 : num  1 8 27 64 125 216 343 512 729 1000
##  $ x10: logi  TRUE TRUE TRUE FALSE FALSE TRUE ...
str(xl) # list()
## List of 3
##  $ : num [1:10] 1 2 3 4 5 6 7 8 9 10
##  $ : int [1:10, 1:10] 1 2 3 4 5 6 7 8 9 10 ...
##  $ :'data.frame':    10 obs. of  10 variables:
##   ..$ x1 : chr [1:10] "aa" "bb" "cc" "dd" ...
##   ..$ x2 : int [1:10] 1 2 3 4 5 6 7 8 9 10
##   ..$ x3 : num [1:10] 1 1 1 1 1 2 2 2 3 3
##   ..$ x4 : num [1:10] 1 2 1 2 1 2 1 2 1 2
##   ..$ x5 : int [1:10] 1 2 3 4 5 1 2 3 4 5
##   ..$ x6 : int [1:10] 1 1 2 2 3 3 4 4 5 5
##   ..$ x7 : num [1:10] 5 10 15 20 25 30 35 40 45 50
##   ..$ x8 : num [1:10] 0 0.301 0.477 0.602 0.699 ...
##   ..$ x9 : num [1:10] 1 8 27 64 125 216 343 512 729 1000
##   ..$ x10: logi [1:10] TRUE TRUE TRUE FALSE FALSE TRUE ...

Packages

Additional libraries can be installed and loaded for use.

install.packages("scales")
library(scales)
xx <- data.frame(Values = 1:10)
xx$Rescaled <- rescale(x = xx$Values, to = c(1,30))
xx
##    Values  Rescaled
## 1       1  1.000000
## 2       2  4.222222
## 3       3  7.444444
## 4       4 10.666667
## 5       5 13.888889
## 6       6 17.111111
## 7       7 20.333333
## 8       8 23.555556
## 9       9 26.777778
## 10     10 30.000000

libraries can also be used without having to load them

scales::rescale(1:10, to = c(1,30))
##  [1]  1.000000  4.222222  7.444444 10.666667 13.888889 17.111111 20.333333 23.555556 26.777778 30.000000

Data Wrangling

R for Data Science - https://r4ds.had.co.nz/

xx <- data.frame(Group = c("X","X","Y","Y","Y","X","X","X","Y","Y"),
                 Data1 = 1:10, 
                 Data2 = seq(10, 100, by = 10))
xx$NewData1 <- xx$Data1 + xx$Data2
xx$NewData2 <- xx$Data1 * 1000
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      X     6    60       66     6000
## 7      X     7    70       77     7000
## 8      X     8    80       88     8000
## 9      Y     9    90       99     9000
## 10     Y    10   100      110    10000
xx$Data1 < 5 # which are less than 5
##  [1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
xx[xx$Data1 < 5,]
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx[xx$Group == "X", c("Group","Data2","NewData1")]
##   Group Data2 NewData1
## 1     X    10       11
## 2     X    20       22
## 6     X    60       66
## 7     X    70       77
## 8     X    80       88

Data wrangling with tidyverse and pipes (%>%)

library(tidyverse) # install.packages("tidyverse")
xx <- data.frame(Group = c("X","X","Y","Y","Y","Y","Y","X","X","X")) %>%
  mutate(Data1 = 1:10, 
         Data2 = seq(10, 100, by = 10),
         NewData1 = Data1 + Data2,
         NewData2 = Data1 * 1000)
xx
##    Group Data1 Data2 NewData1 NewData2
## 1      X     1    10       11     1000
## 2      X     2    20       22     2000
## 3      Y     3    30       33     3000
## 4      Y     4    40       44     4000
## 5      Y     5    50       55     5000
## 6      Y     6    60       66     6000
## 7      Y     7    70       77     7000
## 8      X     8    80       88     8000
## 9      X     9    90       99     9000
## 10     X    10   100      110    10000
filter(xx, Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Data1 < 5)
##   Group Data1 Data2 NewData1 NewData2
## 1     X     1    10       11     1000
## 2     X     2    20       22     2000
## 3     Y     3    30       33     3000
## 4     Y     4    40       44     4000
xx %>% filter(Group == "X") %>% 
  select(Group, NewColName=Data2, NewData1)
##   Group NewColName NewData1
## 1     X         10       11
## 2     X         20       22
## 3     X         80       88
## 4     X         90       99
## 5     X        100      110
xs <- xx %>% 
  group_by(Group) %>% 
  summarise(Data2_mean = mean(Data2),
            Data2_sd = sd(Data2),
            NewData2_mean = mean(NewData2),
            NewData2_sd = sd(NewData2))
xs
## # A tibble: 2 × 5
##   Group Data2_mean Data2_sd NewData2_mean NewData2_sd
##   <chr>      <dbl>    <dbl>         <dbl>       <dbl>
## 1 X             60     41.8          6000       4183.
## 2 Y             50     15.8          5000       1581.
xx %>% left_join(xs, by = "Group")
##    Group Data1 Data2 NewData1 NewData2 Data2_mean Data2_sd NewData2_mean NewData2_sd
## 1      X     1    10       11     1000         60 41.83300          6000    4183.300
## 2      X     2    20       22     2000         60 41.83300          6000    4183.300
## 3      Y     3    30       33     3000         50 15.81139          5000    1581.139
## 4      Y     4    40       44     4000         50 15.81139          5000    1581.139
## 5      Y     5    50       55     5000         50 15.81139          5000    1581.139
## 6      Y     6    60       66     6000         50 15.81139          5000    1581.139
## 7      Y     7    70       77     7000         50 15.81139          5000    1581.139
## 8      X     8    80       88     8000         60 41.83300          6000    4183.300
## 9      X     9    90       99     9000         60 41.83300          6000    4183.300
## 10     X    10   100      110    10000         60 41.83300          6000    4183.300

Read/Write data

xx <- read.csv("data_r_tutorial.csv")
write.csv(xx, "data_r_tutorial.csv", row.names = F)

For excel sheets, the package readxl can be used to read in sheets of data.

library(readxl) # install.packages("readxl")
xx <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data")

Tidy Data

yy <- xx %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = round(mean(DTF),1)) %>% 
  arrange(Location)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          Location            Mean_DTF
##   <chr>         <chr>                  <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh     86.7
## 2 ILL 618 AGL   Jessore, Bangladesh     79.3
## 3 Laird AGL     Jessore, Bangladesh     76.8
## 4 CDC Maxim AGL Metaponto, Italy       134. 
## 5 ILL 618 AGL   Metaponto, Italy       138. 
## 6 Laird AGL     Metaponto, Italy       137. 
## 7 CDC Maxim AGL Saskatoon, Canada       52.5
## 8 ILL 618 AGL   Saskatoon, Canada       47  
## 9 Laird AGL     Saskatoon, Canada       56.8
yy <- yy %>% spread(key = Location, value = Mean_DTF)
yy
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Jessore, Bangladesh` `Metaponto, Italy` `Saskatoon, Canada`
##   <chr>                         <dbl>              <dbl>               <dbl>
## 1 CDC Maxim AGL                  86.7               134.                52.5
## 2 ILL 618 AGL                    79.3               138.                47  
## 3 Laird AGL                      76.8               137.                56.8
yy <- yy %>% gather(key = TraitName, value = Value, 2:4)
yy
## # A tibble: 9 × 3
## # Groups:   Name [3]
##   Name          TraitName           Value
##   <chr>         <chr>               <dbl>
## 1 CDC Maxim AGL Jessore, Bangladesh  86.7
## 2 ILL 618 AGL   Jessore, Bangladesh  79.3
## 3 Laird AGL     Jessore, Bangladesh  76.8
## 4 CDC Maxim AGL Metaponto, Italy    134. 
## 5 ILL 618 AGL   Metaponto, Italy    138. 
## 6 Laird AGL     Metaponto, Italy    137. 
## 7 CDC Maxim AGL Saskatoon, Canada    52.5
## 8 ILL 618 AGL   Saskatoon, Canada    47  
## 9 Laird AGL     Saskatoon, Canada    56.8
yy <- yy %>% spread(key = Name, value = Value)
yy
## # A tibble: 3 × 4
##   TraitName           `CDC Maxim AGL` `ILL 618 AGL` `Laird AGL`
##   <chr>                         <dbl>         <dbl>       <dbl>
## 1 Jessore, Bangladesh            86.7          79.3        76.8
## 2 Metaponto, Italy              134.          138.        137. 
## 3 Saskatoon, Canada              52.5          47          56.8

Base Plotting

We will start with some basic plotting using the base function plot()

# A basic scatter plot
plot(x = xd$x8, y = xd$x9)

# Adjust color and shape of the points
plot(x = xd$x8, y = xd$x9, col = "darkred", pch = 0)

plot(x = xd$x8, y = xd$x9, col = xd$x4, pch = xd$x4)

# Adjust plot type 
plot(x = xd$x8, y = xd$x9, type = "line")

# Adjust linetype
plot(x = xd$x8, y = xd$x9, type = "line", lty = 2)

# Plot lines and points
plot(x = xd$x8, y = xd$x9, type = "both")

Now lets create some random and normally distributed data to make some more complicated plots

# 100 random uniformly distributed numbers ranging from 0 - 100
ru <- runif(100, min = 0, max = 100)
ru
##   [1] 67.1538502 53.2106619 73.9547804 97.2002169 31.6050424 12.4481493 41.9366693 26.3680087  6.7375037 38.7115511 88.7906496 56.9093524 62.1182225
##  [14] 97.6287575  6.0112585 33.6165072 42.1579423 63.0137102 67.2284142 68.3796014 64.0453879 93.5086498 34.4357564 21.3078119  5.7441125 31.2997808
##  [27] 68.4615147 90.2787742 32.8971579 54.1009647 95.5060679 69.0606001 49.3190371 24.1604292 61.4172434 55.8285934 64.7590523 67.1152899 41.1169924
##  [40] 67.0874426 17.0701943 59.2698176 51.0424356 60.9941554 82.3128634 15.9282717 76.6912635 22.3432247 94.5544285 96.8530717 40.2348556 83.2321262
##  [53] 99.4209151 30.7326635 29.1476014 83.9481464 54.4791312 52.1673680 54.8437447 29.6916386 40.3316936 34.2927492 55.8734561 95.4012861 17.9399268
##  [66] 98.5702090 16.7186072 12.2853495 99.7762513  0.6165916 93.3586823 70.6279706 61.7932311 62.4531277 21.0191063 25.2110290 14.0067000 95.4290207
##  [79] 92.3921986 73.8707064 64.6614160 54.5758074 78.6844719 66.5257781 18.6081769 62.3810116 23.2181636 39.5856738  4.0681393 23.6752795 19.9691251
##  [92] 41.6760525  7.3679377 42.8145840 47.0819382 55.5419176  4.0912756 81.2159686 62.3172061 47.2204453
plot(x = ru)

order(ru)
##   [1]  70  89  97  25  15   9  93  68   6  77  46  67  41  65  85  91  75  24  48  87  90  34  76   8  55  60  54  26   5  29  16  62  23  10  88  51  61  39
##  [39]  92   7  17  94  95 100  33  43  58   2  30  57  82  59  96  36  63  12  42  44  35  73  13  99  86  74  18  21  81  37  84  40  38   1  19  20  27  32
##  [77]  72  80   3  47  83  98  45  52  56  11  28  79  71  22  49  64  78  31  50   4  14  66  53  69
ru<- ru[order(ru)]
ru
##   [1]  0.6165916  4.0681393  4.0912756  5.7441125  6.0112585  6.7375037  7.3679377 12.2853495 12.4481493 14.0067000 15.9282717 16.7186072 17.0701943
##  [14] 17.9399268 18.6081769 19.9691251 21.0191063 21.3078119 22.3432247 23.2181636 23.6752795 24.1604292 25.2110290 26.3680087 29.1476014 29.6916386
##  [27] 30.7326635 31.2997808 31.6050424 32.8971579 33.6165072 34.2927492 34.4357564 38.7115511 39.5856738 40.2348556 40.3316936 41.1169924 41.6760525
##  [40] 41.9366693 42.1579423 42.8145840 47.0819382 47.2204453 49.3190371 51.0424356 52.1673680 53.2106619 54.1009647 54.4791312 54.5758074 54.8437447
##  [53] 55.5419176 55.8285934 55.8734561 56.9093524 59.2698176 60.9941554 61.4172434 61.7932311 62.1182225 62.3172061 62.3810116 62.4531277 63.0137102
##  [66] 64.0453879 64.6614160 64.7590523 66.5257781 67.0874426 67.1152899 67.1538502 67.2284142 68.3796014 68.4615147 69.0606001 70.6279706 73.8707064
##  [79] 73.9547804 76.6912635 78.6844719 81.2159686 82.3128634 83.2321262 83.9481464 88.7906496 90.2787742 92.3921986 93.3586823 93.5086498 94.5544285
##  [92] 95.4012861 95.4290207 95.5060679 96.8530717 97.2002169 97.6287575 98.5702090 99.4209151 99.7762513
plot(x = ru)

# 100 normally distributed numbers with a mean of 50 and sd of 10
nd <- rnorm(100, mean = 50, sd = 10)
nd
##   [1] 34.99153 54.93295 40.61686 44.67715 50.65391 60.55050 35.47327 60.00198 40.47612 51.78803 46.54038 55.29064 46.49411 46.18678 63.25190 68.29855
##  [17] 48.01786 58.26054 32.26067 61.34900 41.30425 40.34318 59.51375 59.18166 32.48778 51.06775 67.17177 66.16694 41.00437 64.98443 50.59195 50.02659
##  [33] 50.95270 55.44641 42.95565 42.67302 55.19898 43.60187 51.36777 37.67871 33.94655 57.27022 46.23056 51.84766 51.33986 43.73918 70.21077 43.75916
##  [49] 69.61649 49.62339 42.75666 29.09713 55.34480 52.94980 50.86259 55.53980 61.38493 48.05040 47.22874 57.68839 45.90008 48.26650 42.62218 45.21643
##  [65] 49.39066 57.07935 61.62846 49.84794 50.85797 69.06287 53.31803 55.91084 46.25842 41.41825 75.93279 58.30491 46.14193 55.24865 36.90009 34.38754
##  [81] 29.56082 54.02885 57.67333 43.08780 56.94516 38.31846 53.85255 42.57318 44.91511 37.95481 57.02386 58.49616 36.44287 53.08231 31.89114 50.20256
##  [97] 52.27650 42.19146 57.79841 55.19997
nd <- nd[order(nd)]
nd
##   [1] 29.09713 29.56082 31.89114 32.26067 32.48778 33.94655 34.38754 34.99153 35.47327 36.44287 36.90009 37.67871 37.95481 38.31846 40.34318 40.47612
##  [17] 40.61686 41.00437 41.30425 41.41825 42.19146 42.57318 42.62218 42.67302 42.75666 42.95565 43.08780 43.60187 43.73918 43.75916 44.67715 44.91511
##  [33] 45.21643 45.90008 46.14193 46.18678 46.23056 46.25842 46.49411 46.54038 47.22874 48.01786 48.05040 48.26650 49.39066 49.62339 49.84794 50.02659
##  [49] 50.20256 50.59195 50.65391 50.85797 50.86259 50.95270 51.06775 51.33986 51.36777 51.78803 51.84766 52.27650 52.94980 53.08231 53.31803 53.85255
##  [65] 54.02885 54.93295 55.19898 55.19997 55.24865 55.29064 55.34480 55.44641 55.53980 55.91084 56.94516 57.02386 57.07935 57.27022 57.67333 57.68839
##  [81] 57.79841 58.26054 58.30491 58.49616 59.18166 59.51375 60.00198 60.55050 61.34900 61.38493 61.62846 63.25190 64.98443 66.16694 67.17177 68.29855
##  [97] 69.06287 69.61649 70.21077 75.93279
plot(x = nd)

hist(x = nd)

hist(nd, breaks = 20, col = "darkgreen")

plot(x = density(nd))

boxplot(x = nd)

boxplot(x = nd, horizontal = T)


ggplot2

Lets be honest, the base plots are ugly! The ggplot2 package gives the user to create a better, more visually appealing plots. Additional packages such as ggbeeswarm and ggrepel also contain useful functions to add to the functionality of ggplot2.

library(ggplot2)
mp <- ggplot(xd, aes(x = x8, y = x9))
mp + geom_point()

mp + geom_point(aes(color = x3, shape = x3), size = 4)

mp + geom_line(size = 2)

mp + geom_line(aes(color = x3), size = 2)

mp + geom_smooth(method = "loess")

mp + geom_smooth(method = "lm")

xx <- data.frame(data = c(rnorm(50, mean = 40, sd = 10),
                          rnorm(50, mean = 60, sd = 5)),
                 group = factor(rep(1:2, each = 50)),
                 label = c("Label1", rep(NA, 49), "Label2", rep(NA, 49)))
mp <- ggplot(xx, aes(x = data, fill = group))
mp + geom_histogram(color = "black")

mp + geom_histogram(color = "black", position = "dodge")

mp1 <- mp + geom_histogram(color = "black") + facet_grid(group~.)
mp1

mp + geom_density(alpha = 0.5)

mp <- ggplot(xx, aes(x = group, y = data, fill = group))
mp + geom_boxplot(color = "black")

mp + geom_boxplot() + geom_point()

mp + geom_violin() + geom_boxplot(width = 0.1, fill = "white")

library(ggbeeswarm)
mp + geom_quasirandom()

mp + geom_quasirandom(aes(shape = group))

mp2 <- mp + geom_violin() + 
  geom_boxplot(width = 0.1, fill = "white") +
  geom_beeswarm(alpha = 0.5)
library(ggrepel)
mp2 + geom_text_repel(aes(label = label), nudge_x = 0.4)

library(ggpubr)
ggarrange(mp1, mp2, ncol = 2, widths = c(2,1),
          common.legend = T, legend = "bottom")


Statistics

# Prep data
lev_Loc  <- c("Saskatoon, Canada", "Jessore, Bangladesh", "Metaponto, Italy")
lev_Name <- c("ILL 618 AGL", "CDC Maxim AGL", "Laird AGL")
dd <- read_xlsx("data_r_tutorial.xlsx", sheet = "Data") %>%
  mutate(Location = factor(Location, levels = lev_Loc),
         Name = factor(Name, levels = lev_Name))
xx <- dd %>%
  group_by(Name, Location) %>%
  summarise(Mean_DTF = mean(DTF))
xx %>% spread(Location, Mean_DTF)
## # A tibble: 3 × 4
## # Groups:   Name [3]
##   Name          `Saskatoon, Canada` `Jessore, Bangladesh` `Metaponto, Italy`
##   <fct>                       <dbl>                 <dbl>              <dbl>
## 1 ILL 618 AGL                  47                    79.3               138.
## 2 CDC Maxim AGL                52.5                  86.7               134.
## 3 Laird AGL                    56.8                  76.8               137.
# Plot
mp1 <- ggplot(dd, aes(x = Location, y = DTF, color = Name, shape = Name)) +
  geom_point(size = 2, alpha = 0.7, position = position_dodge(width=0.5))
mp2 <- ggplot(xx, aes(x = Location, y = Mean_DTF, 
                      color = Name, group = Name, shape = Name)) +
  geom_point(size = 2.5, alpha = 0.7) + 
  geom_line(size = 1, alpha = 0.7) +
  theme(legend.position = "top")
ggarrange(mp1, mp2, ncol = 2, common.legend = T, legend = "top")

From first glace, it is clear there are differences between genotypes, locations, and genotype x environment (GxE) interactions. Now let’s do a few statistical tests.

summary(aov(DTF ~ Name * Location, data = dd))
##               Df Sum Sq Mean Sq  F value   Pr(>F)    
## Name           2     88      44    3.476   0.0395 *  
## Location       2  65863   32932 2598.336  < 2e-16 ***
## Name:Location  4    560     140   11.044 2.52e-06 ***
## Residuals     45    570      13                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

As expected, an ANOVA shows statistical significance for genotype (p-value = 0.0395), Location (p-value < 2e-16) and GxE interactions (p-value < 2.52e-06). However, all this tells us is that one genotype is different from the rest, one location is different from the others and that there is GxE interactions. If we want to be more specific, would need to do some multiple comparison tests.

If we only have two things to compare, we could do a t-test.

xx <- dd %>% 
  filter(Location %in% c("Saskatoon, Canada", "Jessore, Bangladesh")) %>%
  spread(Location, DTF)
t.test(x = xx$`Saskatoon, Canada`, y = xx$`Jessore, Bangladesh`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`Saskatoon, Canada` and xx$`Jessore, Bangladesh`
## t = -17.521, df = 32.701, p-value < 2.2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -32.18265 -25.48402
## sample estimates:
## mean of x mean of y 
##  52.11111  80.94444

DTF in Saskatoon, Canada is significantly different (p-value < 2.2e-16) from DTF in Jessore, Bangladesh.

xx <- dd %>% 
  filter(Name %in% c("ILL 618 AGL", "Laird AGL"),
         Location == "Metaponto, Italy") %>%
  spread(Name, DTF)
t.test(x = xx$`ILL 618 AGL`, y = xx$`Laird AGL`)
## 
##  Welch Two Sample t-test
## 
## data:  xx$`ILL 618 AGL` and xx$`Laird AGL`
## t = 0.38008, df = 8.0564, p-value = 0.7137
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -5.059739  7.059739
## sample estimates:
## mean of x mean of y 
##  137.8333  136.8333

DTF between ILL 618 AGL and Laird AGL are not significantly different (p-value = 0.7137) in Metaponto, Italy.


pch Plot

xx <- data.frame(x = rep(1:6, times = 5, length.out = 26),
                 y = rep(5:1, each = 6, length.out = 26),
                 pch = 0:25)
mp <- ggplot(xx, aes(x = x, y = y, shape = as.factor(pch))) +
  geom_point(color = "darkred", fill = "darkblue", size = 5) +
  geom_text(aes(label = pch), nudge_x = -0.25) +
  scale_shape_manual(values = xx$pch) +
  scale_x_continuous(breaks = 6:1) +
  scale_y_continuous(breaks = 6:1) +
  theme_void() +
  theme(legend.position = "none",
        plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust = 0.5),
        axis.text = element_blank(),
        axis.ticks = element_blank()) +
  labs(title = "Plot symbols in R (pch)",
       subtitle = "color = \"darkred\", fill = \"darkblue\"",
       x = NULL, y = NULL)
ggsave("pch.png", mp, width = 4.5, height = 3, bg = "white")


R Markdown

Tutorials on how to create an R markdown document like this one can be found here:



dblogr/


© Derek Michael Wright