Crime In Canada
Graphs of crime statistics using STATCAN data
Data
# devtools::install_github("derekmichaelwright/agData")
library(agData)
library(readxl) # read_xlsx()
Prepare Data
# Prep data
myCaption <- "derekmichaelwright.github.io/dblogr/ | Data: STATCAN"
myColors <- c("darkorange", "darkgreen", "darkred")
myAreas <- c("Canada",
"British Columbia", "Alberta", "Saskatchewan", "Manitoba",
"Ontario", "Quebec", "Newfoundland and Labrador",
"Prince Edward Island", "Nova Scotia", "New Brunswick",
"Yukon", "Northwest Territories", "Nunavut",
"Kelowna, British Columbia", "Abbotsford-Mission, British Columbia",
"Vancouver, British Columbia", "Victoria, British Columbia",
"Lethbridge, Alberta", "Calgary, Alberta", "Edmonton, Alberta",
"Regina, Saskatchewan", "Saskatoon, Saskatchewan", "Winnipeg, Manitoba",
"Saguenay, Quebec", "Québec, Quebec", "Sherbrooke, Quebec",
"Trois-Rivières, Quebec", "Montréal, Quebec", "Ottawa-Gatineau, Quebec part",
"Ottawa-Gatineau, Ontario/Quebec", "Ottawa-Gatineau, Ontario part",
"Kingston, Ontario", "Belleville, Ontario", "Peterborough, Ontario",
"Toronto, Ontario", "Hamilton, Ontario", "St.Catharines-Niagara, Ontario",
"Kitchener-Cambridge-Waterloo, Ontario", "Brantford, Ontario",
"Guelph, Ontario", "London, Ontario", "Windsor, Ontario", "Barrie, Ontario",
"Greater Sudbury, Ontario", "Thunder Bay, Ontario",
"St. John's, Newfoundland and Labrador", "Halifax, Nova Scotia",
"Moncton, New Brunswick", "Saint John, New Brunswick" )
d1 <- read.csv("3510002601_databaseLoadingData.csv") %>%
select(Year=1, Area=GEO, Measurement=Statistics, Unit=UOM, Value=VALUE) %>%
mutate(Area = ifelse(Area == "Canada", Area,
substr(.$Area, 1, regexpr("\\[", .$Area)-2)),
Area = factor(Area, levels = myAreas))
d1.1 <- d1 %>% filter(!grepl("Youth",Measurement))
d1.2 <- d1 %>% filter(grepl("Youth",Measurement))
d1.3 <- d1 %>% filter(Measurement %in% c("Violent crime severity index",
"Youth violent crime severity index"))
#
myCities <- c("Vancouver, British Columbia", "Victoria, British Columbia",
"Kelowna, British Columbia", "Calgary, Alberta",
"Edmonton, Alberta", "Lethbridge, Alberta",
"Regina, Saskatchewan", "Saskatoon, Saskatchewan",
"Winnipeg, Manitoba")
d2 <- read.csv("3510019101_databaseLoadingData.csv") %>%
select(Year=1, Area=GEO, Measurement=Statistics, Unit=UOM, Value=VALUE) %>%
arrange(desc(Value)) %>%
mutate(Area = factor(Area, levels = unique(.$Area)),
Group = ifelse(Area %in% myCities, "West", "East"),
Group = factor(Group, levels = c("West", "East")))
#
d3 <- read.csv("3510006601_databaseLoadingData.csv") %>%
select(Year=1, Area=GEO, Motive=Type.of.motivation, Unit=UOM, Value=VALUE) %>%
arrange(desc(Value)) %>%
mutate(Motive = factor(Motive, levels = unique(.$Motive)))
#
d4 <- read_xlsx("data_canada_crime.xlsx", "Sexual Assault")
#
myTraits <- c("Total", "Property crimes", "Violent crimes", "Other crimes")
d5 <- read_xlsx("data_canada_crime.xlsx", "Crime Rates") %>%
gather(Trait, Value, 3:ncol(.)) %>%
mutate(Trait = factor(Trait, levels = myTraits))
#
myTraits <- c("Total fraud", "General fraud", "Identity fraud", "Identity theft")
d6 <- read_xlsx("data_canada_crime.xlsx", "Fraud") %>%
gather(Trait, Value, 3:ncol(.)) %>%
mutate(Trait = factor(Trait, levels = myTraits))
Crime Severity Index
Canada
# Prep data
xx <- d1.1 %>% filter(Area == "Canada")
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ .) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1995:2025) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL,
caption = myCaption)
ggsave("canada_crime_1_01.png", mp, width = 7, height = 4)
Provinces
# Prep data
xx <- d1.1 %>% filter(Area %in% myAreas[1:14])
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ ., scales = "free_y", ncol = 7) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1998:2020) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_02.png", mp, width = 16, height = 6)
Cities
# Prep data
xx <- d1.1 %>% filter(Area %in% myAreas[15:length(myAreas)])
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ ., scales = "free_y", ncol = 6) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1998:2020) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_03.png", mp, width = 16, height = 10)
Youth Crime Severity Index
Canada
# Prep data
xx <- d1.2 %>% filter(Area == "Canada")
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ .) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1995:2025) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_04.png", mp, width = 7, height = 4)
Provinces
# Prep data
xx <- d1.2 %>% filter(Area %in% myAreas[1:14])
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ ., scales = "free_y", ncol = 7) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1998:2020) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_05.png", mp, width = 16, height = 6)
Violent Crime
Canada
# Prep data
xx <- d1.3 %>% filter(Area == "Canada")
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ .) +
scale_color_manual(name = NULL, values = c("darkred", "steelblue")) +
scale_x_continuous(minor_breaks = 1995:2025) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_06.png", mp, width = 7, height = 4)
Provinces
# Prep data
xx <- d1.3 %>% filter(Area %in% myAreas[1:14])
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ ., scales = "free_y", ncol = 7) +
scale_color_manual(name = NULL, values = c("darkred", "steelblue")) +
scale_x_continuous(minor_breaks = 1998:2020) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_07.png", mp, width = 16, height = 6)
Saskatchewan
Crime Severity Index
# Prep data
xx <- d1.1 %>% filter(Area == "Saskatchewan")
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ .) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1995:2025) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_08.png", mp, width = 8, height = 4)
Youth Crime Severity Index
# Prep data
xx <- d1.2 %>% filter(Area == "Saskatchewan")
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ .) +
scale_color_manual(name = NULL, values = myColors) +
scale_x_continuous(minor_breaks = 1995:2025) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_09.png", mp, width = 8, height = 4)
Violent Crime
# Prep data
xx <- d1.3 %>% filter(Area == "Saskatchewan")
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, color = Measurement)) +
geom_line(size = 1.5, alpha = 0.7) +
facet_wrap(Area ~ .) +
scale_color_manual(name = NULL, values = c("darkred", "steelblue")) +
scale_x_continuous(minor_breaks = 1995:2025) +
theme_agData(legend.position = "bottom") +
labs(y = "Crime Severity Index", x = NULL, caption = myCaption)
ggsave("canada_crime_1_10.png", mp, width = 8, height = 4)
Hate Crimes
All Cities
# Plot
mp <- ggplot(d2, aes(x = Year, y = Value, fill = Group)) +
geom_col(color = "black", alpha = 0.7) +
facet_wrap(Area ~ ., ncol = 6) +
scale_fill_manual(values = c("steelblue", "darkred")) +
scale_x_continuous(breaks = 2014:2021) +
theme_agData(legend.position = "none",
axis.text.x = element_text(angle = 45, hjust = 1)) +
labs(title = "Hate Crime Rate Per 100,000 People",
y = NULL, x = NULL, caption = myCaption)
ggsave("canada_crime_2_01.png", mp, width = 16, height = 10)
2021
# Prep data
xx <- d2 %>% filter(Year == 2021) %>%
arrange(desc(Value)) %>%
mutate(Area = factor(Area, levels = .$Area))
# Plot
mp <- ggplot(xx, aes(x = Area, y = Value, fill = Group)) +
geom_col(color = "black", alpha = 0.7) +
scale_fill_manual(values = c("steelblue", "darkred")) +
theme_agData(legend.position = "none",
axis.text.x = element_text(angle = 55, hjust = 1)) +
labs(title = "Hate Crime By City", x = NULL,
y = "Rate Per 100,000 People", caption = myCaption)
ggsave("canada_crime_2_02.png", mp, width = 8, height = 5)
Ottawa vs Regina
# Prep data
myCities <- c("Regina, Saskatchewan", "Ottawa, Ontario")
xx <- d2 %>% filter(Area %in% myCities) %>%
mutate(Area = factor(Area, levels = myCities))
# Plot
mp <- ggplot(xx, aes(x = Year, y = Value, fill = Area)) +
geom_col(position = "dodge", color = "black", alpha = 0.7) +
scale_fill_manual(name = NULL, values = c("steelblue", "darkred")) +
scale_x_continuous(breaks = 2014:2021) +
theme_agData(legend.position = "bottom") +
labs(title = "Hate Crime Rate Per 100,000 People",
y = NULL, x = NULL, caption = myCaption)
ggsave("canada_crime_2_03.png", mp, width = 6, height = 4)
Hate Crime Types
# Plot
mp <- ggplot(d3, aes(x = Year, y = Value, fill = Motive)) +
geom_col(color = "black", alpha = 0.7) +
facet_wrap(Motive ~ ., scales = "free_y", ncol = 5) +
scale_fill_manual(name = NULL, values = agData_Colors) +
scale_x_continuous(minor_breaks = 2012:2021) +
theme_agData(legend.position = "none") +
labs(title = "Canada", x = NULL,
y = "Crime Severity Index", caption = myCaption)
ggsave("canada_crime_3_01.png", mp, width = 14, height = 4)
Other Crimes
Sexual Assault
# Plot
mp <- ggplot(d4, aes(x = Year, y = Value)) +
geom_line(color = "darkred", size = 1.5, alpha = 0.7) +
scale_x_continuous(breaks = seq(1985, 2025, by = 5),
minor_breaks = 1985:2025) +
theme_agData() +
labs(title = "Sexual Assualts in Canada", y = "Rate per 100,000", x = NULL,
caption = myCaption)
ggsave("canada_crime_4_01.png", mp, width = 6, height = 4)
Property vs Violent Crime
# Plot
mp <- ggplot(d5, aes(x = Year, y = Value, color = Trait)) +
geom_line(alpha = 0.7, size = 1.5) +
scale_color_manual(name = NULL, values = agData_Colors) +
scale_x_continuous(breaks = seq(1960, 2025, by = 10),
minor_breaks = seq(1960, 2025, by = 5)) +
theme_agData(legend.position = "bottom") +
labs(title = "Crime Rate in Canada", x = NULL,
y = "Rate per 100,000", caption = myCaption)
ggsave("canada_crime_5_01.png", mp, width = 6, height = 4)
Fraud
# Plot
mp <- ggplot(d6, aes(x = Year, y = Value, color = Trait)) +
geom_line(alpha = 0.7) +
facet_wrap(Trait ~ ., ncol = 4, scales = "free_y") +
scale_color_manual(name = NULL, values = agData_Colors) +
scale_x_continuous(breaks = seq(1985, 2025, by = 5),
minor_breaks = 1985:2025) +
theme_agData(legend.position = "none") +
labs(title = "Fraud in Canada", x = NULL,
y = "Rate per 100,000", caption = myCaption)
ggsave("canada_crime_6_01.png", mp, width = 8, height = 4)