Politics in Academia
Graphs of about politics in academia
Data
Prepare Data
# Prep data
myCaption1 <- "derekmichaelwright.github.io/dblogr/ | Data: MLI"
myCaption2 <- "derekmichaelwright.github.io/dblogr/ | Data: Nakhaie & Adam (2008)"
d1 <- read_xlsx("data_politics_in_academia.xlsx", "Canada") %>%
mutate(Party = factor(Party, levels = unique(.$Party)),
Measurement = factor(Measurement, unique(.$Measurement)))
#
myCaption3 <- "derekmichaelwright.github.io/dblogr/ | Data: Pew Research"
myRespones <- c("Mostly positive", "Equal positive and negative", "Mostly negative")
d2 <- read_xlsx("data_politics_in_academia.xlsx", "Effect on Society") %>%
mutate(Date = paste(Month, Year),
Response = factor(Response, levels = myRespones))
d3 <- read_xlsx("data_politics_in_academia.xlsx", "Trust") %>%
mutate(Date = paste(Month, Year),
Label_Pos = ifelse(Response != "A fair amount", Percent / 2, NA))
#
myCaption4 <- "derekmichaelwright.github.io/dblogr/ | Data: Lab Langbert (2018)"
d4 <- read_xlsx("data_politics_in_academia.xlsx", "Fields") %>%
mutate(Field = factor(Field, levels = .$Field),
Percent_Dem = 100 * (Democrats) / (Democrats + Republicans),
Percent_Rep = 100 * (Republicans) / (Democrats + Republicans))
Political Views in Academia
2021
# Plot
mp <- ggplot(d1, aes(x = Party, y = `2021`, fill = Measurement)) +
geom_col(position = "dodge", color = "black", alpha = 0.7) +
scale_fill_manual(name = NULL, values = c("darkblue", "steelblue")) +
theme_agData(legend.position = "bottom") +
labs(title = "Political Affiliations in Canada - 2021",
y = "Percent", x = NULL, caption = myCaption1)
ggsave("politics_in_academia_1_01.png", mp, width = 6, height = 4)
2000
# Plot
mp <- ggplot(d1, aes(x = Party, y = `2000`, fill = Measurement)) +
geom_col(position = "dodge", color = "black", alpha = 0.7) +
scale_fill_manual(name = NULL, values = c("darkblue", "steelblue")) +
theme_agData(legend.position = "bottom") +
labs(title = "Political Affiliations in Canada - 2000",
y = "Percent", x = NULL, caption = myCaption2)
ggsave("politics_in_academia_1_02.png", mp, width = 6, height = 4)
1997
# Plot
mp <- ggplot(d1, aes(x = Party, y = `1997`, fill = Measurement)) +
geom_col(position = "dodge", color = "black", alpha = 0.7) +
scale_fill_manual(name = NULL, values = c("darkblue", "steelblue")) +
theme_agData(legend.position = "bottom") +
labs(title = "Political Affiliations in Canada - 1997",
y = "Percent", x = NULL, caption = myCaption2)
ggsave("politics_in_academia_1_03.png", mp, width = 6, height = 4)
1993
# Plot
mp <- ggplot(d1, aes(x = Party, y = `1993`, fill = Measurement)) +
geom_col(position = "dodge", color = "black", alpha = 0.7) +
scale_fill_manual(name = NULL, values = c("darkblue", "steelblue")) +
theme_agData(legend.position = "bottom") +
labs(title = "Political Affiliations in Canada - 1993",
y = "Percent", x = NULL, caption = myCaption2)
ggsave("politics_in_academia_1_04.png", mp, width = 6, height = 4)
Public Opinion
Trust in Science
# Prep data
mySubtitle <- "Percent of U.S. adults who say science has had a(n)\n___ effect on society"
# Plot
mp <- ggplot(d2, aes(x = Date, y = Percent, fill = Response)) +
geom_col(color = "black", alpha = 0.7) +
scale_fill_manual(name = NULL, values = c("darkgreen", "steelblue", "darkred")) +
theme_agData(legend.position = "bottom") +
labs(title = "Trust in Science", subtitle = mySubtitle,
y = "Percent", x = NULL, caption = myCaption3)
ggsave("politics_in_academia_2_01.png", mp, width = 5, height = 4)
Positive or Negative
# Prep data
mySubtitle <- "Percent of U.S. adults who have ___ of confidence in scientists to\nact in the best interest of the public"
# Plot
mp <- ggplot(d3, aes(x = Date)) +
geom_col(aes(y = Percent, fill = Response),
color = "black", alpha = 0.7) +
geom_label(aes(label = Percent, y = Label_Pos)) +
scale_fill_manual(name = NULL, values = c("darkgreen", "steelblue", "darkred")) +
theme_agData(legend.position = "bottom") +
labs(title = "Trust in Science", subtitle = mySubtitle,
y = "Percent", x = NULL, caption = myCaption3)
ggsave("politics_in_academia_2_02.png", mp, width = 5, height = 4)
Academic Fields
# Prep data
xx <- d4 %>% select(-Democrats, -Republicans) %>%
rename(Democrats=Percent_Dem, Republicans= Percent_Rep) %>%
gather(Party, Percent, 2:3) %>%
mutate(Party = factor(Party, levels = c("Republicans","Democrats")))
# Plot
mp <- ggplot(xx, aes(x = Field, y = Percent, label = round(Percent))) +
geom_col(aes(fill = Party), color = "black", alpha = 0.7) +
geom_label(data = xx %>% filter(Party == "Democrats"), nudge_y = -5) +
scale_fill_manual(name = NULL, values = c("darkred","steelblue")) +
theme_agData(legend.position = "bottom") +
coord_flip() +
labs(title = "Party AffiliationTrust in Science",
y = "Percent", x = NULL, caption = myCaption4)
ggsave("politics_in_academia_3_01.png", mp, width = 6, height = 8)