

Master of Agrobiotechnology

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

Influence of heterozygosity on nitrogen use efficiency in hybrid and purebred lines of *Brassica napus* (L.)

Derek Michael Wright

Influence of heterozygosity on nitrogen use efficiency in hybrid and purebred lines of *Brassica napus* (L.)

Derek Michael Wright

Department of Agronomy and Plant Breeding I, Justus-Liebig Universität, Gießen 35392, Germany

Email correspondence: wrightmderek@gmail.com

Submitted: 04/05/2015

Abstract

Consumption of nitrogenous fertilizers has increased dramatically over the past 50 years and is expected to rise ever further in the future as the global demand for agriculture outputs/products increases. Improving the nitrogen use efficiency (NUE) of crop plants is considered to be an important step for improving the sustainability of agricultural systems. 30 Brassica napus cultivars, 20 hybrid and 10 purebred lines, were grown in a greenhouse under two N levels, 0 and 200 kg N/ha N fertilization, then phenotyped. The influence of root traits with respect to seed mass and NUE were investigated and discussed, along with seed quality parameters among the cultivar groups. Additionally, Wilcoxon rank-sum tests on 36,456 polymorphic markers obtained from the Infinium B. napus 60K SNP chip were tested against phenotypic traits such as NUE and seed mass, to identify heterozygotic markers potentially associated with these traits under the contrasting N conditions. Heterozygotic markers that positively influence seed mass and NUE were identified, especially under conditions of no N fertilization. In addition, markers with which the absence influences seed mass and NUE were also identified. The methods used in this study represent a novel way to investigate heterosis in elite lines of *B. napus* and could be a useful tool for helping to improve and investigate phenotypic traits such as NUE. Future studies based on the results obtained herein are discussed.

L

Acknowledgements

I would like to thank Professor Rod Snowdon for allowing me to do my master's thesis in his department. Andreas Stahl for his help, supervision and guidance throughout the project, which he was kind enough to let me join. I would also like to thank Stavros Tzigos for assistance and guidance in the lab work, Birgit Samans for supplying information on SNP positions along the *Brassica napus* genome, and the many interns at the Department of Agronomy and Plant Breeding I, Justus-Liebig Universität, Gießen, for their help in data collection. Lastly, I would like to thank my family for supporting me in my educational goals.

Table of Contents

ABSTRACT	I
ACKNOWLEDGEMENTS	. 11
LIST OF FIGURES	IV
LIST OF TABLES	VI
LIST OF EQUATIONSV	111
LIST OF ABBREVIATIONSV	111
1 INTRODUCTION	.1
1.1 Brassica napus	.1
1.2 Fertilizer Use	.3
1.3 NITROGEN USE EFFICIENCY (NUE)	.4
1.4 Heterosis & Hybrids	.9
1.5 Purpose	11
2 MATERIALS & METHODS	12
2.1 PLANT GROWTH	12
2.2 PHENOTYPIC DATA COLLECTION	17
2.3 GENOTYPIC DATA COLLECTION	17
2.4 DATA ANALYSIS	18
3 RESULTS	19
3.1 РНЕNOТУРІС ДАТА	19
3.1.1 Plant Masses & Seed Yield	19
3.1.2 Seed Traits	25
3.1.3 Root Traits	28
3.1.4 Nitrogen Use Efficiency	31
3.2 GENOTYPIC DATA	34
4 DISCUSSION	45
4.1 Phenotypic Variation for NUE	45
4.2 SEED QUALITY	46
4.3 ROOT TRAITS IN THE CONTEXT OF NUE	47
4.4 HETEROZYGOSITY AND NUE	49
REFERENCES	52

List of Figures

FIGURE 1: <i>BRASSICA NAPUS</i> (A) PRODUCTION AND (B) AREA HARVESTED IN AUSTRALIA, CANADA, FRANCE, GERMANY, INDIA AND CHINA FROM 1961 TO 2013. DATA SOURCE IS HTTP://FAOSTAT.FAO.ORG/FAOSTAT2
FIGURE 2: CORRELATION BETWEEN NITROGENOUS FERTILIZER CONSUMPTION AND <i>BRASSICA NAPUS</i> YIELD IN CHINA. DATA SOURCE IS HTTP://FAOSTAT.FAO.ORG/FAOSTAT.
FIGURE 3: WORLDWIDE AND REGIONAL NITROGENOUS FERTILIZER CONSUMPTION FROM 1961 TO 2012. DATA SOURCE IS HTTP://FAOSTAT.FAO.ORG/FAOSTAT
FIGURE 4: NITROGEN USE EFFICIENCY (NUE) IN AUSTRALIA, CANADA, CHINA, GERMANY, INDIA AND FRANCE FROM 1961 TO 2009. TAKEN WITH PERMISSION FROM LASSALETTA <i>ET AL</i> . (2014) SUPPLEMENTAL MATERIAL 2 RESULTS
FIGURE 5: NITROGENOUS FERTILIZER CONSUMPTION PER HECTARE FOR AUSTRALIA, CANADA, FRANCE, GERMANY, INDIA AND CHINA FROM 1961-2012. DATA SOURCE IS HTTP://FAOSTAT.FAO.ORG/FAOSTAT8
FIGURE 6: <i>B. NAPU</i> S YIELD IN AUSTRALIA, CANADA, FRANCE, GERMANY, INDIA AND CHINA FROM 1961-2002. DATA SOURCE IS HTTP://FAOSTAT.FAO.ORG/FAOSTAT
FIGURE 7: ZEA MAYS (MAIZE/CORN) YIELDS (BUSHELS PER ACRE) IN THE USA FROM 1866 TO 2014. M = SLOPE. DATA SOURCE HTTP://WWW.NASS.USDA.GOV/9
FIGURE 8: PHOTOGRAPHS OF (A) THE PLANT DENSITY AND (B) THE CONTAINERS. PHOTOGRAPHS TAKEN BY ANDREAS STAHL
FIGURE 9: LAYOUT OF CONTAINERS GROWN IN THE GREENHOUSE. SHADED CONTAINERS WERE USED AS BORDERS AND NOT FOR PHENOTYPIC DATA ANALYSIS. N1 = NO FERTILIZER TREATMENT. N2 = 100 KG/HA APPLIED AT BBCH 18 AND BBCH 53-55 (FIGURE 3)
FIGURE 10: GEL ELECTROPHORESIS OF 10 RANDOMLY CHOSEN DNA SAMPLES OF VARYING DNA CONCENTRATIONS TO CHECK FOR QUALITY
FIGURE 11: PLANT MASSES OF <i>B. NAPUS</i> CULTIVARS UNDER NO N FERTILIZATION. THE TOP COLUMN AND HORIZONTAL BLACK LINE REPRESENT SEED MASS. THE LETTERS IN THE STEM MASS BARS INDICATE THE CULTIVAR TYPE AND AGE; H = HYBRID, P = PUREBRED, N = NEW, O = OLD. THE NUMBERS IN THE ROOT MASS BARS INDICATE THE CULTIVARS FINE ROOT SCORE

FIGURE 12: PLANT MASSES OF *B. NAPUS* CULTIVARS UNDER 200 KG/HA N FERTILIZATION. THE TOP COLUMN AND HORIZONTAL BLACK LINE REPRESENT SEED MASS. THE LETTERS IN THE STEM MASS BARS INDICATE THE

CULTIVAR TYPE AND AGE; H = HYBRID, P = PUREBRED, N = NEW, O = OLD. THE NUMBERS IN THE ROOT MASS
BARS INDICATE THE CULTIVARS FINE ROOT SCORE
FIGURE 13: SEED MASS OF <i>B. NAPUS</i> CULTIVAR GROUPS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)
FIGURE 14: (A) SEED OIL MASS AND (B) SEED OIL CONTENT OF <i>B. NAPUS</i> CULTIVAR GROUPS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)
FIGURE 15: (A) SEED PROTEIN MASS AND (B) SEED PROTEIN CONTENT OF <i>B. NAPUS</i> CULTIVAR GROUPS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)
FIGURE 16: HARVEST INDEX OF <i>B. NAPUS</i> CULTIVAR GROUPS FOR HARVEST INDEX UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)
FIGURE 17: SEED MASS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)28
FIGURE 18: (A) ROOT MASS, (B) FINE ROOT SCORE AND (C) ROOT LENGTH OF <i>B. NAPUS</i> CULTIVAR GROUPS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)
FIGURE 19: ROOT MASS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2)
FIGURE 20: NITROGEN USE EFFICIENCY (NUE) OF <i>B. NAPUS</i> CULTIVAR GROUPS UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2). NUE CALCULATED USING EQUATION 1
FIGURE 21: NITROGEN USE EFFICIENCY (NUE) UNDER NO N FERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2). NUE CALCULATED USING EQUATION 1
FIGURE 22: CORRELATION PLOTS FOR SPECIFIC PHENOTYPIC TRAITS AMONG B. NAPUS CULTIVARS UNDER NO N FERTILIZATION (N1) AND 200 KG N/HA (N2). NUE CALCULATED USING EQUATION 1
FIGURE 23: CORRELATION PLOTS FOR SPECIFIC PHENOTYPIC TRAITS AMONG <i>B. NAPUS</i> CULTIVAR GROUPS UNDER NO N FERTILIZATION (N1). NUE CALCULATED USING EQUATION 1
FIGURE 24: CORRELATION PLOTS FOR SPECIFIC PHENOTYPIC TRAITS AMONG <i>B. NAPUS</i> CULTIVAR GROUPS UNDER 200 KG/HA N FERTILIZATION (N2). NUE CALCULATED USING EQUATION 1
FIGURE 25: (PREVIOUS PAGES) MAP OF THE <i>B. NAPUS</i> (A) A GENOME AND (B) C GENOME DISPLAYING HETEROZYGOSITY (BLUE BARS) OF THE 10 PUREBRED LINES, 20 HYBRIDS AND THEIR PARENTS

List of Tables

TABLE 1: INFORMATION ON GENOTYPES USED IN THE STUDY. MSL = MALE STERILITY LEMBKE, OGU = OGURA, SC = SAFE-CROSS, GMS = GENIC MALE STERILITY, NPZ = NORDDEUTSCHE PFLANZENZUCHT , DSV = DEUTSCHE SAATVEREDELUNG AG, MTO = MONSANTO DEUTSCHLAND GMBH, SW = SW SEED, TODAY SYNGENTA HADMERSLEBEN GMBH, LG = LIMAGRAIN GMBH, SYN = SYNGENTA SEEDS GMBH, BCS = BAYER CROP SCIENCES AG.13
TABLE 2: VALUES OF SPECIFIC SOIL CHARACTERISTICS. 15
TABLE 3: TIMELINE FOR ACTIONS TAKEN DURING THE GREENHOUSE GROWTH OF BRASSICA NAPUS PLANTS. BBCH = (BIOLOGISCHE BUNDESANSTALT, BUNDESSORTENAMT UND CHEMISCHE INDUSTRY) BRASSICA NAPUS LIFE CYCLE STAGE ACCORDING TO (JULIUS KÜHN INSTITUT, 2001).
TABLE 4: FERTILIZERS USED IN THE GROWTH OF BRASSICA NAPUS PLANTS: (A) PRESOWN FERTILIZER AND (B) NITROGENOUS FERTILIZER. 16
TABLE 5: RANKING OF B. NAPUS CULTIVARS FOR SEED MASS AND NITROGEN USE EFFICIENCY (NUE) UNDER NO NFERTILIZATION (N1) AND 200 KG/HA N FERTILIZATION (N2), ALONG WITH CULTIVAR TYPE AND BREEDER. NUECALCULATED USING EQUATION 1. NPZ = NORDDEUTSCHE PFLANZENZUCHT , DSV = DEUTSCHESAATVEREDELUNG AG, MTO = MONSANTO DEUTSCHLAND GMBH, SW = SW SEED, TODAY SYNGENTAHADMERSLEBEN GMBH, LG = LIMAGRAIN GMBH, SYN = SYNGENTA SEEDS GMBH, BCS = BAYER CROPSCIENCES AG.23
TABLE 6: TOP FIVE AND BOTTOM FIVE B. NAPUS CULTIVAR PERFORMERS FOR (A) SEED MASS UNDER NO N FERTILIZATION (N1), (B) NITROGEN USE EFFICIENCY (NUE) UNDER N1, (C) SEED MASS UNDER 200 KG N/HA FERTILIZATION (N2) AND (D) NUE UNDER N2. NUE CALCULATED USING EQUATION 1
TABLE 7: DIFFERENCES IN ROOT TRAITS FROM NO N FERTILIZATION TO 200 KG N/HA N FERTILIZATION IN (A) HYBRID AND (B) PUREBRED CULTIVARS. 30
TABLE 8: MARKER DATA INFORMATION FOR EACH OF THE CULTIVARS USED IN THIS STUDY ALONG WITH THE PARENTAL LINES OF ALL HYBRID CULTIVARS. L = PUREBRED, H = HYBRID, X = PARENT 1, Z = PARENT 235
TABLE 9 (FOLLOWING PAGES): MARKERS ASSOCIATED WITH SEED MASS UNDER NO N FERTILIZATION USING WILCOXON RANK-SUM TESTS WITH SIGNIFICANCE SET TO P < 0.01. FOR EACH MARKER, THE GENOTYPE'S MARKER TYPE IS DISPLAYED FROM LOWEST TO HIGHEST (TABLE 5), ALONG WITH A CALCULATED SCORE FOR EACH MARKER PRESENT, AND THE ORIGINAL SNP VARIATION IN THE 30 GENOTYPES. (A) MARKERS IN WHICH HOMOZYGOSITY AND HETEROZYGOSITY DIFFERED, (B) MARKERS IN WHICH SINGLE COPY DIFFERED FROM TWO COPIES, AND (C) MARKERS IN WHICH PRESENCE AND ABSENCE DIFFERED. "0" = MISSING, "1" = SINGLE COPY, "2" = HOMOZYGOTIC, "3" = HETEROZYGOTIC, "4" = INCORRECT

- TABLE 15: MARKERS IDENTIFIED AS SIGNIFICANT IN ALL WILCOXON RANK-SUM TESTS (SEED MASS AND NITROGENUSE EFFICIENCY (NUE) UNDER NO AND 200 KG N/HA FERTILIZATION) AT P < 0.05. NUE CALCULATED USINGEQUATION 1.45

List of Equations

EQUATION 1: NITROGEN USE EFFICIENCY (NUE) CALCULATION, METHOD 1.	5
EQUATION 2: NITROGEN USE EFFICIENCY (NUE) CALCULATION, METHOD 2.	5
EQUATION 3: CALCULATION OF N FERTILIZATION WHEN 1.6 G N IS ADDED TO CONTAINER	15
EQUATION 4: CALCULATION OF AVAILABLE N IN SOIL (N1)	15
EQUATION 5: CALCULATION OF AVAILABLE N WITH FERTILIZATION OF 200 KG N/HA (N2).	15

List of Abbreviations

BBCH	=	Biologische Bundesanstalt, Bundessortenamt und Chemische Industry, a
		number system describing the different stages of plant growth
FAO	=	Food and Agricultural Organization of the United Nations
Ν	=	Nitrogen
N1	=	The treatment of no N fertilization
N2	=	The treatment of 2 applications of 100 kg N/ha fertilization
NF	=	Nitrogenous Fertilizer
NFC	=	Nitrogenous Fertilizer Consumption
NIRS	=	Near Infrared Spectrophotometry
NUE	=	Nitrogen Use Efficiency
NupE	=	Nitrogen Uptake Efficiency
NutE	=	Nitrogen Utilization Efficiency
QTL	=	Quantitative Trait Loci

1 Introduction

1.1 Brassica napus

Brassica napus L., known by its common name as rape, is a member of the Brassicaceae family, and a very important oilseed crop. As of 2010, *B. napus* had an estimated annual value of C\$15.4 billion in Canada (Rempel *et al.*, 2014), the largest *B. napus* producing country, in terms of both total production (Figure 1a) and area harvested (Figure 1b). *B. napus* is a amphidiploid species (AACC, 2n = 38), containing the full diploid genomes of *B. rapa* (AA, 2n = 20) and *B. oleracea* (CC, 2n = 18), that arose from interspecific hybridization followed by genome duplication enabling a stable genome. Similar events have occurred between another *Brassica* species, *B. nigra*, (BB, 2n = 16) producing *B. carinata* (BBCC, 2n = 34) and *B. juncea* (AABB, 2n = 36), described in a theory termed the Triangle of U (U, 1935). Evolutionarily speaking, *B. napus* is a very new plant species, thought to have appeared only after its parental species, *B. rapa* and *B. oleracea*, were cultivated in close geographical proximity (Friedt & Snowdon, 2010).

Production of *B. napus* was limited until the 1980's (Figure 1a), after the development of the so called "0" and "00" varieties beginning in the mid 1960's. Natural *B. napus* varieties had high levels of erucic acid (C22:1, cis 13-docosenoic acid), a fatty acid with bitter taste and health implications, and glucosinolates, which rendered the seed unusable for livestock feed after oil extraction (Friedt & Snowdon, 2010). Breeders in Manitoba, Canada reduced the erucic acid content from 28-42% to less than 1% creating the first "0" cultivars (Stefansson & Hougen, 1964). After the identification of the Polish "Bronowski" cultivar, with low levels of glucosinolates (Josefsson & Appelqvist,

1968), the Manitoba breeders were able to develop a "00" cultivar, "Tower", with yields equivalent to the standard cultivar at the time, "Target" (Stefansson & Kondra, 1975). These "00" cultivars, with low levels of erucic acid and glucosinolates, became referred to as canola (can = Canada, ola = oil), a term which was later trademarked by the Western Canadian Oilseed Crushers Association in 1978 to distinguish these superior seeds from other rapeseed (canolacouncil.org). These breeding successes have since made *B. napus* the third largest vegetable oil source in the world (fas.usda.gov).

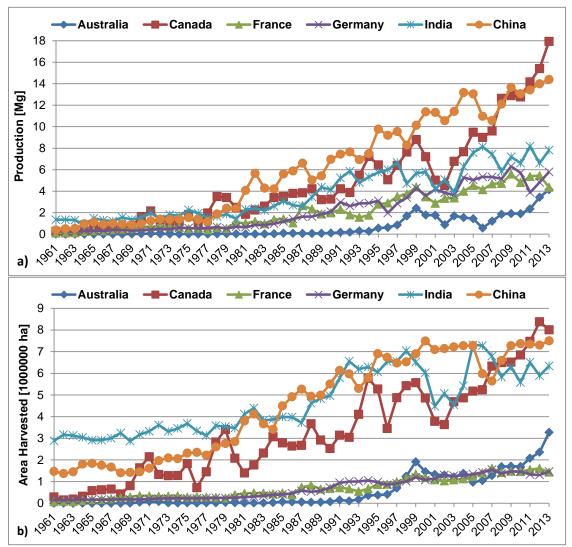


Figure 1: *Brassica napus* (a) production and (b) area harvested in Australia, Canada, France, Germany, India and China from 1961 to 2013. Data source is <u>http://faostat.fao.org/faostat</u>.

JLU Giessen

1.2 Fertilizer Use

Nitrogen (N) is an important part of the structure of both amino and nucleic acids, making it a macronutrient for all life on earth. The importance of nutrients for plant growth was first realized by the German botanist Carl Sprengel (1787-1859), in his Law of the Minimum, which states that the growth of an organism is limited by the scarcest nutrient, the concept behind fertilizer use. His ideas were later popularized by Justus von Liebig (1803-1873), "the father of the fertilizer industry", who recognized nitrogen as one of the limiting nutrients. In 1913, the Haber-Bosch process was developed, allowing for the economic production of ammonia (NH₄) from atmospheric nitrogen (N₂) and, thus, industrial scale synthetic nitrogenous fertilizer (NF) production. Often the limiting element in plant growth, the application of synthetic NF has been used to greatly increase crop yields (Hatfield & Prueger, 2004), illustrated by Figure 2. This increase in yield due to the application of synthetic NF has been labeled as the "Detonator of the population explosion" (Smil, 1999), facilitating the 4.5 fold increase in the world population from 1.6 billion in 1900 to todays 7.2 billion (census.gov).

Since the 1960's, worldwide consumption of NF has steadily increased (Figure 3). While the benefits of fertilizer use are obvious, their overuse has potential health and environmental problems, such as air and water pollution (Muhammad *et al.*, 2013). In addition, economic costs must also be considered. In cereal production, up to 67% of the NF is lost, representing an economic loss of \$15.9 billion USD annually (Raun & Johnson, 1999). Combined with the high energy requirement for producing NF through the Haber-Bosch process, improved efficiency in nitrogen use has been suggested as a critical step required for the development of a sustainable agricultural system, with

which breeding programs should focus (Weisler *et al.*, 2001; Fess *et al.*, 2011). Breeding for crops with higher nitrogen use efficiency (NUE) could be used to both increase yields and help reduce the global demand for NF by allowing for sustained yields with less fertilizer input.

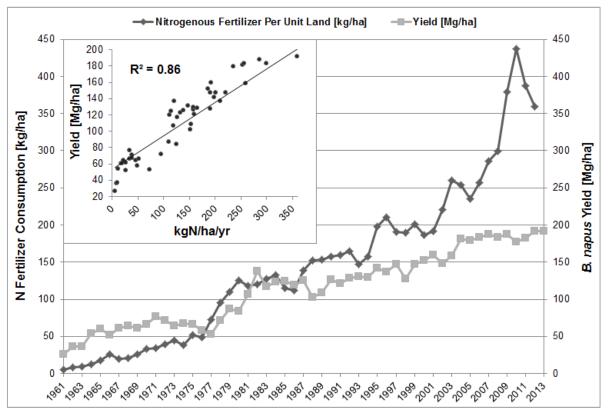


Figure 2: Correlation between nitrogenous fertilizer consumption and *Brassica napus* yield in China. Data source is <u>http://faostat.fao.org/faostat</u>.

1.3 Nitrogen Use Efficiency (NUE)

For crop plants, there are two ways researchers have calculated NUE. In the first method, which will be used in this study, the amount of N in the product produced is divided by the available N (Equation 1), giving a number that represents the proportion of available N the plant was able to allocate to its product. In the second method, the amount of product produced is divided by the available N (Equation 2), ignoring the products N content. Often, NUE is calculated using the latter, since data for the amount

of N in product often does not exist and since product produced per available N is more applicable to the farmer.

Figure 3: Worldwide and regional nitrogenous fertilizer consumption from 1961 to 2012. Data source is <u>http://faostat.fao.org/faostat</u>.

Equation 1: Nitrogen use efficiency (NUE) calculation, method 1. N in Seeds/Available N = NUE

Equation 2: Nitrogen use efficiency (NUE) calculation, method 2. Yield/Available N = NUE

Using data from the Food and Agricultural Organization of the United Nations (FAO) and defining NUE using Equation 2, as a region's total grain production divided by their total nitrogenous fertilizer consumption (NFC), Hatfield & Prueger (2004) showed a strong decrease of NUE in South America, China, Australia and Africa since 1961, with the USA decreasing slightly and Western Europe remaining the same. Lassaletta *et al.* (2014) calculated 50-year trends of NUE in 124 countries using Equation 1, by utilizing annual yield data for 178 primary crops and their corresponding

average N content, divided by total N input, which included synthetic NF, biological N fixation, manure application and atmospheric deposition. Their data showed diverse trends among the different countries. Canada and Australia, which originally had high NUE, decreased sporadically with increased N availability (Figure 4). China, which originally had a high NUE, has seen major decreases in NUE (Figure 4), coinciding with their tremendous increase in NFC per unit land (Figure 5). India, also decreased NUE with increasing available N levels but managed to halt further NUE decreases with total N inputs beyond ~70 kgN/ha/yr (Figure 4). Germany and France, which originally had low NUE, have seen a major increase in NUE (Figure 4), attributable to a decrease in NFC per unit land during 1988-1993 (Figure 5), and the ability to maintain general increases in crop yield, as can be seen with *B. napus* (Figure 6). Unfortunately data for NFC for specific crops does not exists and therefore NUE in *B. napus* cannot be estimated without making assumptions of equal fertilization among all crop land, which is known to be incorrect (Heffer, 2013). Even in countries such as China, it is not known how much of the increases in NFC is actually occurring in *B. napus* production or other major, NF intensive crops such as Oryza sativa (rice) and Triticum spp. (wheat).

NUE is an integration of both nitrogen uptake efficiency (NupE), how well the plant can acquire the available nitrogen in the soil, and nitrogen utilization efficiency (NutE), the fraction of acquired nitrogen that is used for seed production (Moll *et al.*, 1982). These are important to distinguish, because NUE can be limited by either factor. In *B. napus*, NutE is thought to be the limiting factor in its NUE. Relative to plant species from Poaceae and Fabaceae, the Brassicaceae have a high NupE (Laine *et al.*, 1993). Despite this, *B. napus* has a low NUE due to its low NutE, caused by N lost to the soil in

aborted leaves. This has been illustrated in investigations of N remobilization using ¹⁵N labelled nitrogen (Schjoerring *et al.*, 1995; Rossato, 2001; Malagoli *et al.*, 2005b) and via N content determination of plant material (Hocking *et al.*, 1997; Leleu *et al.*, 2000). Recent studies under contrasting N fertilization (high and low) have shown differences based on the amount of available N, an approach which is critical for understanding NUE (Kant *et al.*, 2011), and which was used in this study. Under low N fertilization, NupE has a stronger effect on NUE in *B. napus*, while at high N fertilization, NutE is more important (Kessel *et al.*, 2012; Nyikako *et al.*, 2014). However, it should be noted that this also depends on genotype and environmental variation. Based on models from their ¹⁵N labelled nitrogen experiments, Malagoli *et al.* (2005a) suggest that yield or N content could be increased by up to 15% through optimization of NutE in *B. napus*.

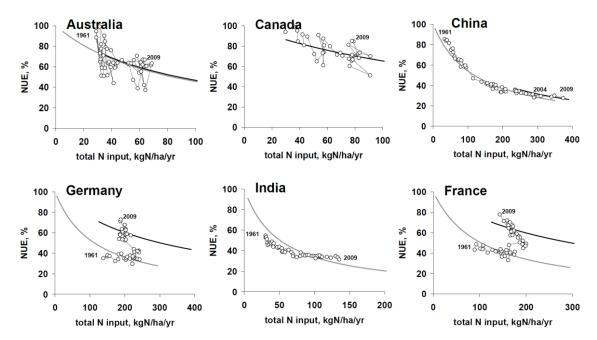


Figure 4: Nitrogen use efficiency (NUE) in Australia, Canada, China, Germany, India and France from 1961 to 2009. Taken with permission from Lassaletta *et al.* (2014) Supplemental Material 2 Results.

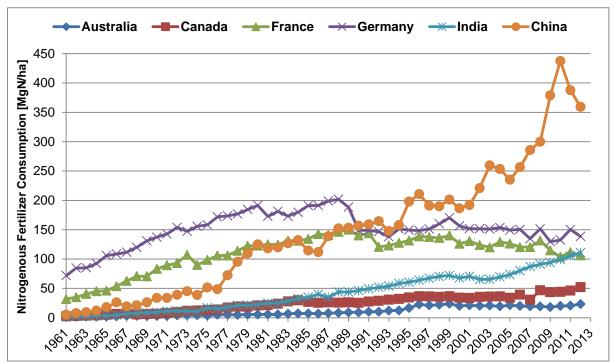


Figure 5: Nitrogenous fertilizer consumption per hectare for Australia, Canada, France, Germany, India and China from 1961-2012. Data source is http://faostat.fao.org/faostat.

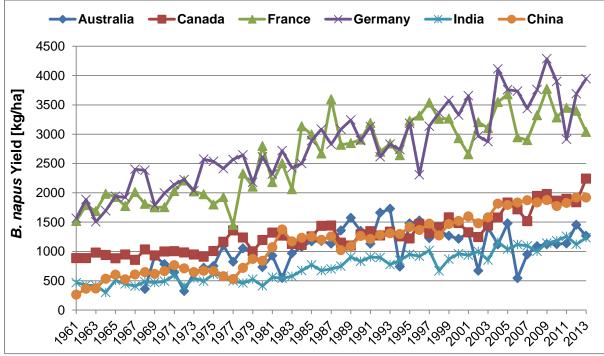


Figure 6: *B. napus* yield in Australia, Canada, France, Germany, India and China from 1961-2002. Data source is <u>http://faostat.fao.org/faostat</u>.

1.4 Heterosis & Hybrids

Hybrid vigor, the phenomenon of improved phenotypic performance in the offspring of crossed purebred/inbred lines, or heterosis, has been observed in various plant species for over a hundred years. Darwin described heterosis in *Brassica oleracea* in 1876, however, the term "heterosis", was coined later in 1914 (Shull). Commercial hybrid seed, was first sold in 1924 (Crow, 1998), using a four-way hybrid breeding system developed by Jones (1922). Figure 7 illustrates the benefits of hybrid breeding programs to *Zea mays* (maize/corn) production in the USA. Hybrid production and utilization of heterosis have since become an important breeding aspect for many crops, including *B. napus*.

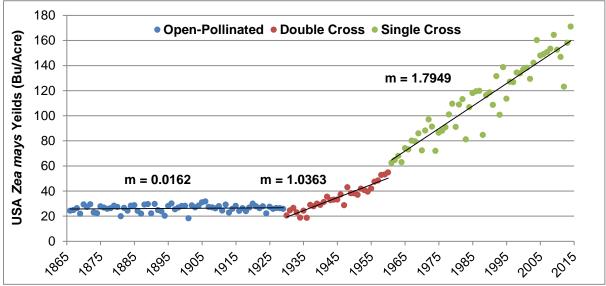


Figure 7: *Zea mays* (maize/corn) yields (bushels per acre) in the USA from 1866 to 2014. m = slope. Data source <u>http://www.nass.usda.gov/</u>.

It wasn't until 1908 that hypotheses about heterosis were first proposed, Dominance (Davenport, 1908) and Codominance (East, 1908; Shull, 1908). In the Dominance hypothesis, heterosis occurs when slightly deleterious recessive alleles, present in the inbreed parents, are masked/complemented by the presence of a lessDerek M Wright

Master Thesis

deleterious dominant allele, *i.e.*, the opposite of inbreeding depression. According to the Codominance hypothesis, heterosis arises from the phenotypic superiority of heterozygotic loci. Since 1908, many investigations into heterosis have been conducted, but have yet to provide a complete understanding of the molecular mechanisms underlying the phenomenon. Instead, heterosis appears to result from a diversity of complex mechanisms (Schnable & Springer, 2013). Emerging models describe heterosis as "the cumulative positive effect of the differential expression of a variety of genes, on one or several yield-affecting metabolic pathways or overall energy-use efficiency" (Baranwal *et al.*, 2012).

In order to implement a hybrid breeding program, pollination must be controlled. For bisexual plants, such as *B. napus*, male sterility is the most efficient way to achieve this. There are many ways to produce male sterility, including mechanical castration, chemical gametocides, or biological pollination control. Biological pollination control can also be accomplished through several mechanisms: self-incompatibility, cytoplasmicencoded male sterility, nuclear-encoded male sterility and environment-sensitive genetic male sterility. Kempe & Gils (2011) provide a historical review of all of these options, with a focus on new genetically engineered approaches.

In *B. napus*, hybrid cultivation has only relatively recently become popular. Despite numerous early documentations of male sterility from different sources (Thompson, 1972; Shiga & Baba, 1973; Bannerot *et al.*, 1974), problems such as instability, negative effects of the male sterility genes, and lack of suitable restorer or maintainer lines inhibited their use in *B. napus* (Friedt & Snowdon, 2010). However, in the 1990's a number of methods, which have since seen commercial success, were developed,

Derek M Wright

including the Ogura (OGU) system (Kao *et al.*, 1992) and the Male Sterility Lembke (MSL) system (Frauen & Paulmann, 1999). In 1995 the first hybrid winter-type *B. napus* varieties were registered (Frauen & Paulmann, 1999), and by the 2003/2004 season, a hybrid cultivar, "Talent", became the most widely cultivated *B. napus* winter-type variety in Germany (Friedt & Snowdon, 2010). An increased yield stability and adaptation to low input cropping systems (Budewig & Lèon, 2003; Friedt *et al.*, 2003) motivated farmers to make the switch from the open-pollinated purebred lines. Since their introduction in Germany, *B. napus* hybrids have consistently had a higher yield than purebred lines (Abbadi & Leckband, 2011). A recent focus of *B. napus* breeders is to utilize the heterosis of hybrid cultivars to help achieve a higher NUE and adaptability to lower levels of N fertilization (Friedt *et al.*, 2003; Gehringer *et al.*, 2007).

1.5 Purpose

With the recent release of the genomes of *B. napus* (Chalhoub *et al.*, 2014), and its two parental species *B. rapa* (Wang *et al.*, 2011) and *B. oleracea* (Liu *et al.*, 2014), new avenues for research on heterosis in *B. napus* have opened. In addition, a high density *B. napus* Infinium SNP array with over 50,000 SNPs was developed in 2011, by an international Brassica SNP consortium in cooperation with Illumina Inc. (San Diego, CA, USA) and released in 2012 (Snowdon & Iniguez Luy, 2012; Edwards *et al.*, 2013). This new information is a valuable resource for both *B. napus* researchers and breeders, and was exploited in this study.

The purpose of this study was to measure NUE and related phenotypic characteristics, such as root mass and seed yield, in thirty varieties of both new and old, hybrid and purebred *B. napus* cultivars (Table 1), under both high (N2; 2x 100 kg N/ha)

Derek M Wright

and no nitrogen fertilization (N1). In addition, marker analysis with the 60 k Illumina SNP chip was conducted on all varieties in order to investigate possible relationships of heterozygosity to phenotypic traits such as NUE and seed yield. The goal was to identify markers and regions of the *B. napus* genome with which heterozygosity correlates with improved phenotypic traits, something which could be advantageous to hybrid breeders. This study tested the hypothesis that heterozygosity within specific regions of the *B. napus* genome contributes to improved phenotypic traits, such as NUE or seed yield, and that these regions can be identified using a large data set of SNP markers of known genomic location, information which could be utilized as a selection tool in hybrid breeding programs.

2 Materials & Methods

2.1 Plant Growth

Thirty *B. napus* varieties, 20 hybrid and 10 purebred lines, both old and new (Table 1), were grown in a greenhouse (Figure 8b). For each experimental replicate of genotype and fertilizer treatment, nine plants were grown in containers of 0.16 m² surface area (Figure 8a), filled with 147.5 kg of soil with a dry matter content of 88.2% (130.1 kg dry mass; Table 2), in the layout described in Figure 9, with each being repeated once (n=2). Two fertilizer treatments were given, no N fertilization (N1) and 200 kg N/ha (N2), administered through two applications of 100 kg/ha N fertilization by applying 1.6 g N to each container (Equation 3) at growth stages of BBCH 18 and 53-55 (Julius Kühn Institut, 2001). The amount of N available from the soil was calculated by adding up the amount of available N per kg of soil from nitrate (NO₃) and ammonium (NH₄) and assuming the organic N is unavailable (Table 2). Some of the organic N may become

mobilized, and available for the plants, but since the amount is not known, it is excluded from use in Equation 4. Plants which received no N fertilization (N1) had 677 mg/plant of available N (Equation 4), while the plants which received 200 kg N/ha (N2) had 1033 mg/plant of available N (Equation 5). A timeline for actions taken during the growth of the *B. napus* plants, including fertilization dates, can be found in Table 3. Information on fertilizers used, including the presown fertilizer applied to all soils, is described in Table

4.

Table 1: Information on genotypes used in the study. MSL = Male Sterility Lembke, OGU = Ogura, SC = Safe-Cross, GMS = Genic Male Sterility, NPZ = Norddeutsche Pflanzenzucht, DSV = Deutsche Saatveredelung AG, MTO = Monsanto Deutschland GmbH, SW = SW Seed, today Syngenta Hadmersleben GmbH, LG = Limagrain GmbH, SYN = Syngenta Seeds GmbH, BCS = Bayer Crop Sciences AG.

	Hybrid Type	Breeder	Year of Release		Hybrid Type	Breeder	Year of Release
A. new Hybrids				C. new Lines			
NPZ 1203 Z (HZH)	MSL	NPZ	-	Patron	-	BCS	2012
Troy (HZH)	MSL	DSV	-	Trinity	-	SW	2012
Marathon	MSL	DSV	2013	Adriana	-	LG	2007
Mercedes	MSL	NPZ	2013	Lorenz	-	NPZ	2005
Avatar	MSL	NPZ	2011	Oase	-	DSV	2004
DK Exstorm	OGU	MTO	2011	D. older Lines			
Inspiration	OGU	DSV	2011	Pacific	-	LG	2003
Genie	MSL	DSV	2011	Californium	-	MTO	2002
Mascara	SC	SW	2011	Aviso	-	SW	2000
Artoga	OGU	LG	2010	Express	-	NPZ	1993
Sherpa	MSL	NPZ	2010	Lirajet	-	DSV	1989
Compass	MSL	DSV	2009				
NK Linus	GMS	SYN	2009				
Visby	MSL	NPZ	2007				
B. older Hybrids							
Exocet	OGU	DSV	2005				
Taurus	MSL	NPZ	2004				
Baldur	MSL	NPZ	2002				
Elektra	MSL	BCS	2002				
Ryder	OGU	SW	2000				
Artus	MSL	NPZ	1997				

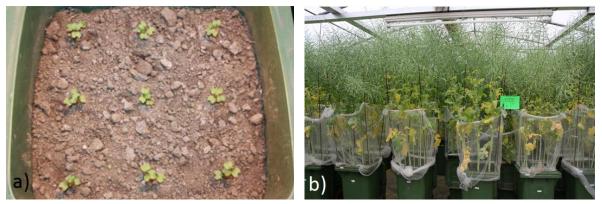


Figure 8: Photographs of (a) the plant density and (b) the containers. Photographs taken by Andreas Stahl.

Replication I									
N2	N1		N2	I	N1		N2		N1
1 Major	24 Major		25 Groß Lüsew itzer	48 G	Groß Lüsew itzer		49 Madrigal	72	Madrigal
2 Pacific	23 Pacific		26 Californium	47 (Californium		50 Trinity	71	Trinity
3 Marathon	22 Marathon		27 Lirajet	46 L	_irajet		51 Baldur	70	Baldur
4 Troy	21 Troy		28 Patron	45 F	Patron		52 Mercedes	69	Mercedes
5 Elektra	20 Elektra		29 Mascara	44 N	Mascara		53 Lorenz	68	Lorenz
6 NPZ 1203 Z	19 NPZ 1203 Z		30 Compass	43 (Compass		54 Ryder	67	Ryder
7 DK Exstorm	18 DK Exstorm		31 Adriana	42 /	Adriana		55 Aviso	66	Aviso
8 NK Linus	17 NK Linus		32 Exocet	41 E	Exocet		56 Sherpa	65	Sherpa
9 Avatar	16 Avatar		33 Artus	40 A	Artus		57 Express	64	Express
10 Oase	15 Oase		34 Genie	39 (Genie		58 Taurus	63	Taurus
11 Artoga	14 Artoga		35 Visby	38 \	∕isby		59 Inspiration	62	Inspiration
12 Lirajet	13 Lirajet		36 Oase	37 (Dase		60 Pacific	61	Pacific
			Replic	ation	n II				
N2	N1		N2	I	N1		N2		N1
73 Major	96 Major		97 Expert	120 E	Expert		121 Expert	144	Expert
74 Sherpa	95 Sherpa		98 Express	119 E	Express		122 Taurus	143	Taurus
75 Aviso	94 Aviso		99 Baldur	118 E	Baldur		123 Elektra	142	Elektra
76 NK Linus	93 NK Linus		100 Mascara	117 N	Mascara		124 Trinity	141	Trinity
77 Ryder	92 Ryder		101 Marathon	116 N	Marathon		125 Visby	140	Visby
78 Lirajet	91 Lirajet		102 Artus	115 A	Artus		126 Troy	139	Troy
79 Adriana	90 Adriana		103 Oase	114 (Dase		127 DK Exstorm	138	DK Exstorm
80 Inspiration	89 Inspiration		104 Lorenz	113 L	_orenz		128 Mercedes	137	Mercedes
81 Genie	88 Genie		105 Pacific	112 F	Pacific		129 Avatar	136	Avatar
82 Compass	87 Compass		106 Artoga	111 /	Artoga		130 Exocet	135	Exocet
83 Patron	86 Patron		107 Californium	110 (Californium		131 NPZ 1203 Z	134	NPZ 1203 Z
84 Lirajet	85 Lirajet		108 Oase	109 (Dase		132 Pacific	133	Pacific

Figure 9: Layout of containers grown in the greenhouse. Shaded containers were used as borders and not for phenotypic data analysis. N1 = no fertilizer treatment. N2 = 100 kg/ha applied at BBCH 18 and BBCH 53-55 (Figure 3).

Table 2: Values of specific soil characteristics.

Wet Soil	Dry Soil	Dry Matter	P	K₂O	Total N	NO3	NH₄	Organic N
Ma <i>s</i> s [kg]	Mass [kg]	Content [%]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]	[mg/kg]
147.5	130.1	88.2	51.2	9.52	54.675	44.65	2.15	7.875

Equation 3: Calculation of N fertilization when 1.6 g N is added to container.

$$(1.6 g N) \cdot \left(\frac{1 kg}{1000 g}\right) \cdot \left(\frac{1}{0.16 m^2}\right) \cdot \left(\frac{10000 m^2}{1 ha}\right) = 100 \frac{kg N}{ha}$$

Equation 4: Calculation of available N in soil (N1).

$$N1 = \frac{\left(44.65 \frac{mg N}{kg \text{ soil}} + 2.15 \frac{mg N}{kg \text{ soil}}\right) \cdot (130.1 \text{ kg soil})}{9 \text{ plants}} = 677 \frac{mg N}{\text{per plant}}$$

Equation 5: Calculation of available N with fertilization of 200 kg N/ha (N2).

$$N2 = 677 \frac{mg N}{per plant} + \frac{2 \cdot (1600 mg N)}{9 plants} = 1033 \frac{mg N}{per plant}$$

Table 3: Timeline for actions taken during the greenhouse growth of *Brassica napus* plants. BBCH = (**B**iologische Bundesanstalt, **B**undessortenamt und **Ch**emische Industry) *Brassica napus* life cycle stage according to (Julius Kühn Institut, 2001).

2013-10-30Presowing fertilization of container2013-11-04Sowing Light were switched on from 8 a.m. to 9 p.m2013-12-09Supplementation of missing plants2014-01-13Light were switched on from 8. a.m. to 5 p.m.2014-01-14Thin out to final plant density of 9 plants per container1. N-Fertilization at BBCH 182014-03-06N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-552014-04-02N1: no Fertilization N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-04-04Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	Date	Action				
2013-11-04Light were switched on from 8 a.m. to 9 p.m2013-12-09Supplementation of missing plants2014-01-13Light were switched on from 8. a.m. to 5 p.m.2014-01-14Thin out to final plant density of 9 plants per container1. N-Fertilization at BBCH 182014-03-06N1: no FertilizationN2: 1,6 g N via NH ₄ NO ₃ in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight2. N-Fertilization at BBCH 53-552014-04-02N1: no FertilizationN2: 1,6 g N via NH ₄ NO ₃ in 1 L Water (=100 kg N/ha)2014-04-02N1: no Fertilization at BBCH 53-552014-04-02N1: no FertilizationN2: 1,6 g N via NH ₄ NO ₃ in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2013-10-30	Presowing fertilization of container				
Light were switched on from 8 a.m. to 9 p.m2013-12-09Supplementation of missing plants2014-01-13Light were switched on from 8. a.m. to 5 p.m.2014-01-14Thin out to final plant density of 9 plants per container1. N-Fertilization at BBCH 182014-03-06N1: no FertilizationN2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight2. N-Fertilization at BBCH 53-552014-04-02N1: no FertilizationN2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-022014-04-032014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2013-11-04	Sowing				
2014-01-13Light were switched on from 8. a.m. to 5 p.m.2014-01-14Thin out to final plant density of 9 plants per container1. N-Fertilization at BBCH 182014-03-06N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-552014-04-02N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-02N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2013-11-04	Light were switched on from 8 a.m. to 9 p.m				
2014-01-14Thin out to final plant density of 9 plants per container1. N-Fertilization at BBCH 182014-03-06N1: no FertilizationN2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight2. N-Fertilization at BBCH 53-552014-04-02N1: no FertilizationN2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-02N1: no FertilizationN2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2013-12-09	Supplementation of missing plants				
1. N-Fertilization at BBCH 182014-03-06N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-03-102014-03-31From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-552014-04-02N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2014-01-13	Light were switched on from 8. a.m. to 5 p.m.				
2014-03-06N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-552014-04-02N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2014-01-14	Thin out to final plant density of 9 plants per container				
N2: 1,6 g N via NH_4NO_3 in 1 L Water (=100 kg N/ha)2014-03-10Final container position2014-03-31From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-552014-04-02N1: no Fertilization N2: 1,6 g N via NH_4NO_3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest		1. N-Fertilization at BBCH 18				
2014-03-10 Final container position 2014-03-31 From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-55 2014-04-02 N1: no Fertilization N2: 1,6 g N via NH₄NO₃ in 1 L Water (=100 kg N/ha) 2014-04-04 Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water 2014-05-27 Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew) 2014-06-30 Start with container harvest	2014-03-06	N1: no Fertilization				
2014-03-31 From now watering to 75% Water capacity according to weight 2. N-Fertilization at BBCH 53-55 2014-04-02 N1: no Fertilization N2: 1,6 g N via NH ₄ NO ₃ in 1 L Water (=100 kg N/ha) 2014-04-04 Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water 2014-05-27 Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew) 2014-06-30		N2: 1,6 g N via NH_4NO_3 in 1 L Water (=100 kg N/ha)				
2. N-Fertilization at BBCH 53-55 2014-04-02 N1: no Fertilization N2: 1,6 g N via NH₄NO₃ in 1 L Water (=100 kg N/ha) 2014-04-04 Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water 2014-05-27 Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew) 2014-06-30 Start with container harvest	2014-03-10	Final container position				
2014-04-02N1: no Fertilization N2: 1,6 g N via NH4NO3 in 1 L Water (=100 kg N/ha)2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2014-03-31	From now watering to 75% Water capacity according to weight				
N2: 1,6 g N via NH₄NO₃ in 1 L Water (=100 kg N/ha) 2014-04-04 Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water 2014-05-27 Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew) 2014-06-30 Start with container harvest		2. N-Fertilization at BBCH 53-55				
2014-04-04Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest	2014-04-02	N1: no Fertilization				
2014-05-27Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)2014-06-30Start with container harvest		N2: 1,6 g N via NH_4NO_3 in 1 L Water (=100 kg N/ha)				
2014-06-30 Start with container harvest	2014-04-04	Application of Biscaya (Insecticide) 300 mL/ha in 600L/ha water				
	2014-05-27	Application of Proline (Fungicide) 0,7L/ha (because of powdery mildew)				
	2014-06-30	Start with container harvest				
2014-07-15 Container harvest completed	2014-07-15	Container harvest completed				

Table 4: Fertilizers used in the growth of *Brassica napus* plants: (a) presown fertilizer and (b) nitrogenous fertilizer.

Fertili	zer	Nutrient	Nurient Content [%]	kg / ha	Nutrient [g] / Container	Fertilizer [g] / Container
Triple Superpher	mbot 50% B O	Р	22.0	<u>100.00</u>	1.60	7.27
Triple-Superphos	sphat 50% P ₂ O ₅	S	14.0	0.00	1.02	
		К	25.0	<u>400.00</u>	6.40	25.6
Patentkali (30% K ₂ O,	10% MgO, 17% S)	Mg	6.0	0.00	1.54	
		S	17.0	0.00	4.35	
Fertili	zer	Fertilizer [g] /	Nutrient	Nutrient [g] /	Nutrient [g] /	Nutrient [g] /
		100 mL	Content [%]	100 mL	ha	Container
Ammonium moly	bdate (1kg/ha) NH4 ⁺	0.029	54.435	0.0160	ha 1000	0.0160
Ammonium moly	bdate (1kg/ha) NH4 ⁺ MnSO4*H ₂ O					
Ammonium moly		0.029	54.435	0.0160	1000	0.0160
Ammonium moly	MnSO ₄ *H ₂ O	0.029 0.492	54.435 32.5	0.0160 0.1600	1000 10000	0.0160 0.1600

_	(g)	(kg/ha)	Container (g)
b)	1.6	100	6.1074
~,-			

2.2 Phenotypic Data Collection

Plant phenotypes were measured on a per container basis but converted to a per plant basis. For plant roots all plants were used, however, for the shoots 2 of the nine plants were removed for use in another project. The scoring of root hairs was done subjectively, through visual estimation on a scale of 1-4, with 1 representing a low amount of fine roots and 4 a high amount of fine roots. Seed oil and protein masses were determined through near infrared spectrophotometry (NIRS) measurements (Tkachuk, 1981; Tillmann & Paul, 1998; Tillmann *et al.*, 2000) using a Unity SpectraStar 2500 (Brookfield, USA). For this study, Equation 1 was used to calculate NUE.

2.3 Genotypic Data Collection

Plants for genotypic analysis were grown for three weeks in a greenhouse, after which leaves were harvested for DNA extraction. For each genotype, 4 replicates (n=5) were grown for separate DNA extraction. DNA extraction was performed using a BioSprint 96 and BioSprint 15 with their Plant DNA Kit (<u>www.qiagen.com</u>). Leaf material was frozen in liquid nitrogen and lysed with a TissueLyser II (Qiagen) set at 30 rotations per second for 30 seconds. 500 μ L RLT buffer was added to the frozen plant material and then vortexed. All samples were centrifuged for 5 minutes at 13000 rpm. 250 μ L of the supernatant was then used for DNA extraction with the BioSprint 15 or 96, which used 200 μ L isopropanol with 20 μ L MagAttract Suspension G, 500 μ L RPW buffer (with RNase) and 500 μ L 97% ethanol as reagents for DNA extraction, with the DNA being dissolved in 60 μ L of H₂0 and stored at -20°C.

DNA concentration was determined using the Qubit 2.0 and their dsDNA Assay Kit using standards of known concentration and dsDNA binding fluorescent stains

(<u>www.lifetechnologies.com</u>). DNA quality was checked using gel electrophoresis (1% agrose gel with 0.5x TBE buffer) of 10 randomly chosen samples (Figure 10). Genotype replicates were then pooled together and sent to TraitGenetics GmbH, Gatersleben, Germany (<u>www.traitgenetics.com</u>) for SNP determination using the 60 K *B. napus* SNP Chip (Snowdon & Iniguez Luy, 2012; Edwards *et al.*, 2013).

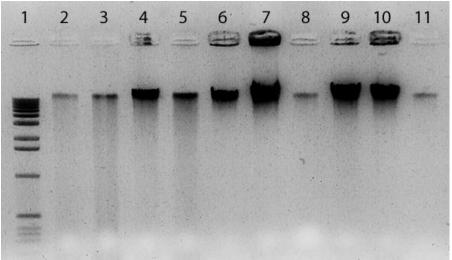


Figure 10: Gel electrophoresis of 10 randomly chosen DNA samples of varying DNA concentrations to check for quality.

2.4 Data Analysis

Data analysis was done with Excel, and the open-source statistical program R (<u>www.r-project.org/</u>). Marker data from the hybrid varieties were checked by analysing the markers of both parents. This allowed for determination of incorrect markers, if they did not match possible outcomes from the parents, and markers which may have been present as one copy, if one of the parents was "failed". There are a number of reasons to account for a "failed" marker: the absence of that SNP in the sample, errors in the equipment's ability to detect the SNP, such as insufficient light signal for detection, or the detection of more than two SNPs at the location. In the last situation since the DNA of five individuals was pooled, this could be due to multiple factors, such as

contamination from foreign pollen during seed production, or in the case of the hybrids, a situation in which marker combinations from the parents could produce two possible heterozygotes (*e.g.*, one parent is "AA" and the other is "CT", resulting in offspring either "AC" or "AT").

For our purposes, the SNP markers were converted to being either homozygous ("2") or heterozygous ("3"), with hybrids having the additional options of markers determined to be incorrect ("4"), and those thought to be present in only one copy ("1"). The "failed" markers were converted to "0". Genomic locations for 28,698 of the 52,157 markers (55%) were determined using a BLAST analysis. Markers that were monomorphic in our data set were filtered out, resulting in a loss of 15,701 of the 52,157 markers (30.1%), leaving 36,456 polymorphic markers. Wilcoxon rank-sum tests were conducted on all markers to test for their association with phenotypic traits such as NUE and seed yield using a statistical significance of p < 0.01 or p < 0.05.

3 Results

3.1 Phenotypic Data

3.1.1 Plant Masses & Seed Yield

The collection of winter-type *B. napus* hybrid and purebred cultivars exhibited phenotypic variation as expected. Genotypes showed variation in total plant mass, seed mass, root mass and root score (Figure 11; Figure 12). Under N2, there was an increase in plant masses and less variation compared to N1 (Figure 11; Figure 12). Patron is of particular interest due to its large root mass under both N treatments (Figure 11; Figure 12).

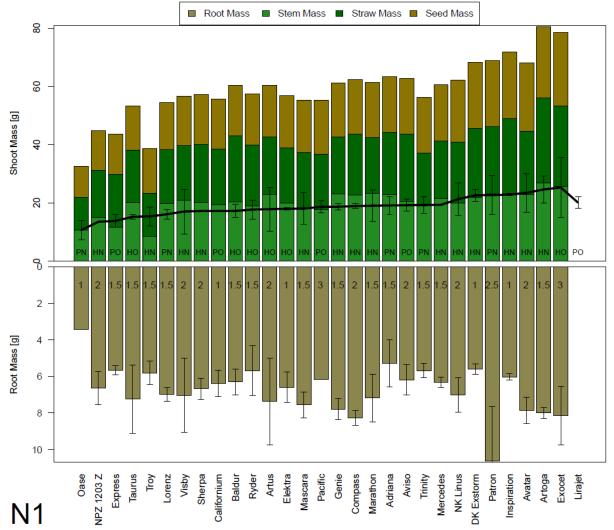


Figure 11: Plant masses of *B. napus* cultivars under no N fertilization. The top column and horizontal black line represent seed mass. The letters in the stem mass bars indicate the cultivar type and age; H = hybrid, P = purebred, N = new, O = old. The numbers in the root mass bars indicate the cultivars fine root score.

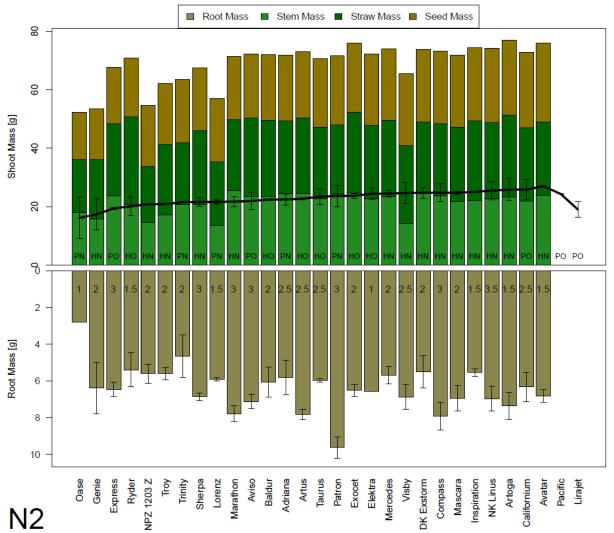


Figure 12: Plant masses of *B. napus* cultivars under 200 kg/ha N fertilization. The top column and horizontal black line represent seed mass. The letters in the stem mass bars indicate the cultivar type and age; H = hybrid, P = purebred, N = new, O = old. The numbers in the root mass bars indicate the cultivars fine root score.

Table 5 displays the phenotypic ranking of cultivars for seed mass and NUE under both N treatments. Among the top performers for seed mass and NUE under both N treatments there was high variation of breeders (Table 5). Under N1, Norddeutsche Pflanzenzucht cultivars represented many of the lowest performing cultivars for both seed mass and NUE, while under N2, Deutsche Saatveredelung cultivars represented many of the lowest performing cultivars for seed mass and NUE (Table 5). Under N1, the hybrids Exocet, Artoga, Avatar, Inspiration and the purebred Patron were the top performers for seed yield, respectively (Table 6a). Avatar, Californium, Artoga, NK Linus and Inspiration were the highest seed yield performers under N2, with Californium as the only one not a new hybrid (Table 6c). Comparing the top five seed mass performers to the bottom, root scores, plant masses and NUE were higher amongst the top five under both N treatments (Table 6a,c). Despite their nearly identical seed protein, seed, straw, stem and root masses, under N1, Argota and Exocet had different root structures. Artoga had a higher root length and a lower fine root score, compared to Exocet (Table 6a). Root score among the top five cultivars for seed mass ranged from 1-3 under N1 and 1.5-3.5 under N2 (Table 6). In the bottom five, root score ranged from 1-2 under N1 and 1-3 under N2 (Table 6).

Table 5: Ranking of *B. napus* cultivars for seed mass and nitrogen use efficiency (NUE) under no N fertilization (N1) and 200 kg/ha N fertilization (N2), along with cultivar type and breeder. NUE calculated using Equation 1. NPZ = Norddeutsche Pflanzenzucht , DSV = Deutsche Saatveredelung AG, MTO = Monsanto Deutschland GmbH, SW = SW Seed, today Syngenta Hadmersleben GmbH, LG = Limagrain GmbH, SYN = Syngenta Seeds GmbH, BCS = Bayer Crop Sciences AG.

	N1 Seed Mas		N2 Seed Mas		N1 NUE		N2 NUE	
1	HO Exocet	DSV	HN Avatar	NPZ	PN Patron	BCS	PO Californium	MTO
2	HN Artoga	LG	PO Californium	MTO	HO Exocet	DSV	HN NK Linus	SYN
3	HN Avatar	NPZ	HN Artoga	LG	HN Artoga	LG	PN Adriana	LG
4	HN Inspiration	DSV	HN NK Linus	SYN	HN NK Linus	SYN	HN Inspiration	DSV
5	PN Patron	BCS	HN Inspiration	DSV	PO Lirajet	DSV	PN Trinity	SW
6	HN DK Exstorm	MTO	HN Mascara	SW	HN Avatar	NPZ	HN Mascara	SW
7	HN NK Linus	SYN	HN Compass	DSV	PO Aviso	SW	HN Compass	DSV
8	PO Lirajet	DSV	HN DK Exstorm	MTO	HN Inspiration	DSV	HN Avatar	NPZ
9	HN Mercedes	NPZ	HN Visby	NPZ	HN DK Exstorm	MTO	HN Mercedes	NPZ
10	PN Trinity	SW	HN Mercedes	NPZ	PN Adriana	LG	HN NPZ 1203 Z	NPZ
11	PO Aviso	SW	HO Elektra	BCS	PN Trinity	SW	HO Artus	NPZ
12	PN Adriana	LG	PO Pacific	LG	HN Mascara	SW	PO Pacific	LG
13	HN Marathon	DSV	HO Exocet	DSV	HO Ryder	SW	PO Aviso	SW
14	HN Compass	DSV	PN Patron	BCS	PO Pacific	LG	HO Elektra	BCS
15	HN Genie	DSV	HO Taurus	NPZ	HO Elektra	BCS	HN Troy	DSV
16	PO Pacific	LG	HO Artus	NPZ	HN Marathon	DSV	PN Patron	BCS
17	HN Mascara	SW	PN Adriana	LG	HO Artus	NPZ	HO Ryder	SW
18	HO Elektra	BCS	HO Baldur	NPZ	HN Mercedes	NPZ	HN Artoga	LG
19	HO Artus	NPZ	PO Aviso	SW	HN Compass	DSV	HN Visby	NPZ
20	HO Ryder	SW	HN Marathon	DSV	HN Troy	DSV	HO Baldur	NPZ
21	HO Baldur	NPZ	PN Lorenz	NPZ	HN Sherpa	NPZ	HO Exocet	DSV
22	PO Californium		HN Sherpa	NPZ	HO Baldur	NPZ	HO Taurus	NPZ
23	HN Sherpa	NPZ	PN Trinity	SW	HN NPZ 1203 Z	NPZ	HN DK Exstorm	MTO
24	HN Visby	NPZ	HN Troy	DSV	PO Californium		HN Sherpa	NPZ
25	PN Lorenz	NPZ	HN NPZ 1203 Z	NPZ	HN Genie	DSV	PN Lorenz	NPZ
26	HN Troy	DSV	HO Ryder	SW	PN Lorenz	NPZ	PO Lirajet	DSV
27	HO Taurus	NPZ	PO Express	NPZ	HN Visby	NPZ	PO Express	NPZ
28	PO Express	NPZ	PO Lirajet	DSV	HO Taurus	NPZ	HN Marathon	DSV
29	HN NPZ 1203 Z	NPZ	HN Genie	DSV	PO Express	NPZ	HN Genie	DSV
30	PN Oase	DSV						

Table 6: Top five and bottom five *B. napus* cultivar performers for (a) seed mass under no N fertilization (N1), (b) Nitrogen use efficiency (NUE) under N1, (c) seed mass under 200 kg N/ha fertilization (N2) and (d) NUE under N2. NUE calculated using Equation 1. a) N1 Seed Mass

	Genotype Exocet HO		Root Score [1-4]	Root Length [cm]	Root Mass [g]	Stem + Straw Mass [g]	Seed Mass [g]	Seed Oil Mass [g]	Seed Protein Mass [g]	NUE
1			3	55	8.1	53.3	25.3	12.5	3.8	0.901
2	Artoga	ΗN	1.5	62.5	8.0	56.0	24.6	12.1	3.7	0.873
3	Avatar	ΗN	2	57.5	7.9	44.6	23.4	11.9	3.5	0.833
4	Inspiration	ΗN	1	62.5	6.0	48.9	22.9	11.5	3.5	0.818
5	Patron	PN	2.5	55	10.6	46.2	22.6	11.1	4.0	0.940
26	Troy	HN	1.5	62.5	5.8	23.3	15.4	7.3	2.8	0.665
27	Taurus	но	1.5	55	7.2	38.0	15.2	7.5	2.5	0.580
28	Express	PO	1.5	67.5	5.7	29.9	13.8	6.8	2.4	0.569
29	NPZ 1203 Z	ΗN	2	55	6.6	31.3	13.5	6.2	2.6	0.623
30	Oase	PN	1	60	3.4	23.9	10.6	4.8	2.0	0.467

b) N1 NUE

	Construins	Root Score	e Root Length	Root Mass	Stem + Straw	Seed Mass	Seed Oil	Seed Protein	NULT
	Genotype	[1-4]	[cm]	[g]	Mass [g]	[g]	Mass [g]	Mass [g]	NUE
1	Patron P	N 2.5	55	10.6	46.2	22.6	11.1	4.0	0.940
2	Exocet H	IO 3	55	8.1	53.3	25.3	12.5	3.8	0.901
3	Artoga H	IN 1.5	62.5	8.0	56.0	24.6	12.1	3.7	0.873
4	NK Linus 🗜	IN 2	55	7.0	40.9	21.3	10.2	3.6	0.840
5	Lirajet P	O NA	NA	NA	NA	20.1	8.7	3.5	0.836
26	Lorenz P	N 1.5	65	7.0	38.3	16.1	7.6	2.6	0.604
27	Visby H	IN 2	60	7.0	39.7	17.0	8.3	2.5	0.595
28	Taurus H	IO 1.5	55	7.2	38.0	15.2	7.5	2.5	0.580
29	Express P	O 1.5	67.5	5.7	29.9	13.8	6.8	2.4	0.569
30	Oase P	N 1	60	3.4	23.9	10.6	4.8	2.0	0.467

c) N2 Seed Mass

	Genotype		Root Score	Root Length	Root Mass	Stem + Straw	Seed Mass	Seed Oil	Seed Protein	NUE
			[1-4]	[cm]	[g]	Mass [g]	[g]	Mass [g]	Mass [g]	NUE
1	Avatar	ΗN	1.5	50	6.8	48.9	27.0	13.1	4.4	0.675
2	Californium	PO	2.5	50	6.3	47.0	25.8	11.5	4.9	0.752
3	Artoga	ΗN	1.5	60	7.4	51.2	25.8	12.4	4.1	0.629
4	NK Linus	ΗN	3.5	62.5	7.0	48.7	25.5	12.0	4.6	0.710
5	Inspiration	HN	1.5	60	5.5	49.3	25.1	11.3	4.5	0.691
26	Ryder	ю	1.5	50	5.4	50.8	20.1	8.5	4.1	0.629
27	Express	РО	3	60	6.5	48.0	19.4	9.3	3.6	0.556
28	Lirajet	PO	NA	NA	NA	NA	19.0	7.8	3.6	0.563
29	Genie	ΗN	2	45	6.4	36.1	17.4	8.0	3.2	0.490
30	Oase	PN	1	55	2.8	41.7	16.2	7.0	3.1	0.488

d) N2 NUE

- /	Genotype		Root Score	Root Length	Root Mass	Stem + Straw	Seed Mass	Seed Oil	Seed Protein	NUT
			[1-4]	[cm]	[g]	Mass [g]	[g]	Mass [g]	Mass [g]	NUE
1	Californium	PO	2.5	50	6.3	47.0	25.8	11.5	4.9	0.752
2	NK Linus	HN	3.5	62.5	7.0	48.7	25.5	12.0	4.6	0.710
3	Adriana	PN	2.5	42.5	5.8	49.4	22.4	9.8	4.5	0.695
4	Inspiration	ΗN	1.5	60	5.5	49.3	25.1	11.3	4.5	0.691
5	Trinity	PN	2	50	4.7	41.9	21.6	9.0	4.4	0.686
26	Lirajet	PO	NA	NA	NA	NA	19.0	7.8	3.6	0.563
27	Express	PO	3	60	6.5	48.0	19.4	9.3	3.6	0.556
28	Marathon	ΗN	3	47.5	7.8	49.7	21.7	10.3	3.6	0.553
29	Genie	HN	2	45	6.4	36.1	17.4	8.0	3.2	0.490
30	Oase	PN	1	55	2.8	41.7	16.2	7.0	3.1	0.488

3.1.2 Seed Traits

Phenotypic differences in seed traits existed between both N treatments and cultivar groups. There was a general increase in traits such as seed mass (Figure 13: Figure 17), seed oil mass (Figure 14), seed protein mass and seed protein content (Figure 15) under N2. For seed mass and seed oil mass, there were no significant differences among cultivar groups. However, it was clear that the new hybrids performed the best overall (Figure 13; Figure 14; Figure 17), under both N levels. Under N1, the new purebreds had a higher seed oil content than the old purebreds. However, under N2 the new purebreds had lower seed oil content than the old purebreds (Figure 14). Excluding outliers, there appears to be major decreases in seed protein content in the new hybrids compared to the other cultivar groups, under both N treatments, but not in total seed protein mass (Figure 15). Seed protein content ranged from 10.7 – 19.2 %, with much variation within and among cultivars groups and between N fertilizer treatments (Figure 15). Harvest index, calculated as seed mass divided by the total plant mass, shows a clear increase from old to new in purebreds and hybrids under both N fertilization treatments (Figure 16).

The new hybrids Artoga and Avatar were in the top three for seed yield under both N treamtents (Figure 17). In addition, DK Exstorm, Inspiration and NK linus also performed well under both N treatments (Figure 17). In comparison, the purebred Californium did very well for seed mass under N2, but poorly under N1 (Figure 17). It is clear, by their position above the diagonal line, that most cultivars, with the exception of Exocet, Lirajet and Genie, perform better under N fertilization (Figure 17).

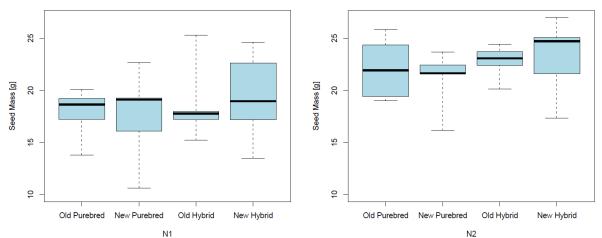


Figure 13: Seed mass of *B. napus* cultivar groups under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

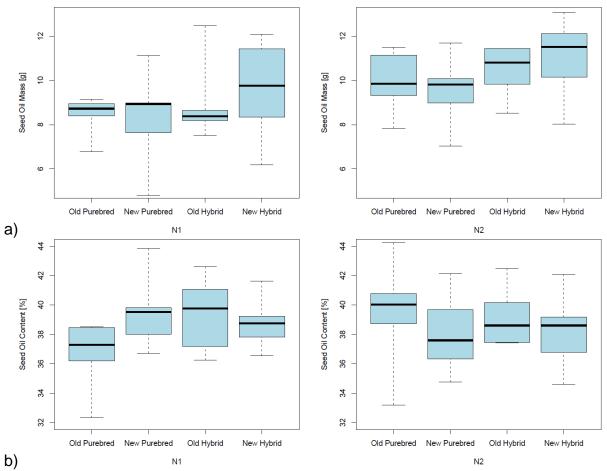


Figure 14: (a) Seed oil mass and (b) seed oil content of *B. napus* cultivar groups under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

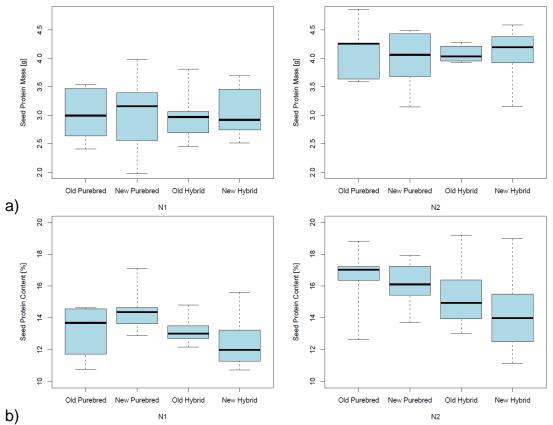


Figure 15: (a) Seed protein mass and (b) seed protein content of *B. napus* cultivar groups under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

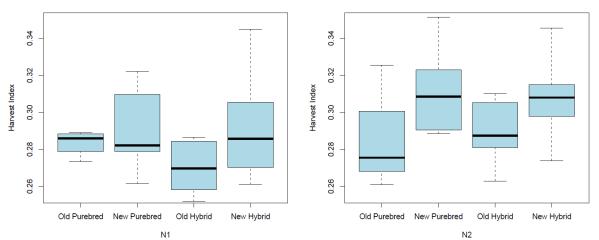
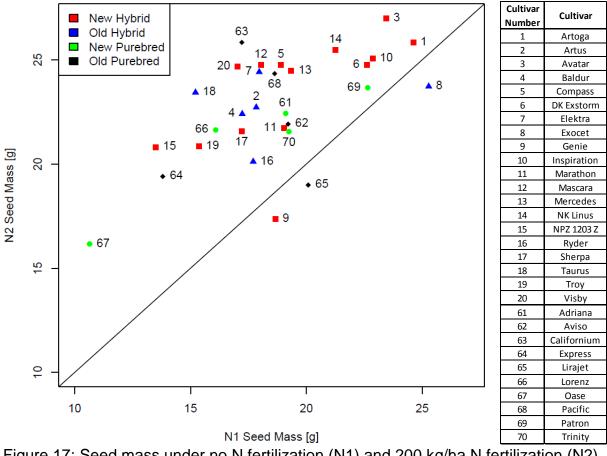



Figure 16: Harvest index of *B. napus* cultivar groups for harvest index under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

Figure 17: Seed mass under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

3.1.3 Root Traits

Although root mass did not differ much between the two N levels, root length was slightly lower and fine root score was higher under N2 compared to N1 (Figure 18). This was especially seen in root score between the old purebred cultivars under the different N treatments. However, these changes were not universal among all cultivars. Artus, NK Linus, Visby and Patron had higher root length under N2 than N1, and Avatar and Exocet had lower fine root scores under N2 than N1 (Table 7), illustrating variability in root structure responses under the different N treatments among *B. napus* cultivars. There was a large difference in root mass variation between the old and new purebreds (Figure 18). Excluding the new purebred Patron, which had a root mass much greater

than all other cultivars, the hybrids had high root mass under both N treatments, and especially under N1 (Figure 19).

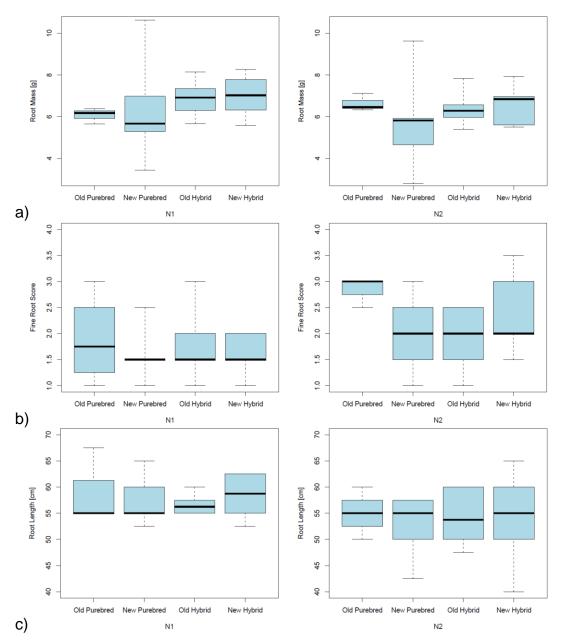


Figure 18: (a) Root mass, (b) fine root score and (c) root length of *B. napus* cultivar groups under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

Δ

Fine Root

1

1

1.5

1.5

NA

0

0

NA

0.5

0.5

,	Δ	Δ	Δ
Genotype	Root Length	Root Mass	Fine Root
Artoga	-2.5	-0.63	0
Artus	2.5	0.47	0.5
Avatar	-7.5	-1.03	-0.5
Baldur	0	-0.25	0.5
Compass	-2.5	-0.34	1
DK Exstorm	-2.5	-0.09	1
Elektra	-5	-0.03	0
Exocet	-7.5	-1.63	-1
Genie	-15	-1.39	0.5
Inspiration	-2.5	-0.48	0.5
Marathon	-5	0.61	1.5
Mascara	-2.5	-0.61	0.5
Mercedes	-7.5	-0.63	0.5
NK Linus	7.5	-0.04	1.5
NPZ 1203 Z	0	-1.03	0
Ryder	-5	-0.28	0
Sherpa	0	0.19	1
Taurus	0	-1.27	1
Troy	-22.5	-0.20	0.5
Visby	5	-0.16	0.5

Table 7: Differences in root traits from no N fertilization to 200 kg N/ha N fertilization
in (a) hybrid and (b) purebred cultivars.

b)

Genotype

Adriana

Express

Lirajet

Lorenz

Oase

Pacific

Patron

Trinity

Californium

Aviso

Δ

Root Length

-10

0

-5

-7.5

NA

-7.5

-5

NA

2.5

-5

Δ

Root Mass

0.53

0.94

-0.06

0.81

NA

-1.07

-0.65

NA

-0.99

-1.02

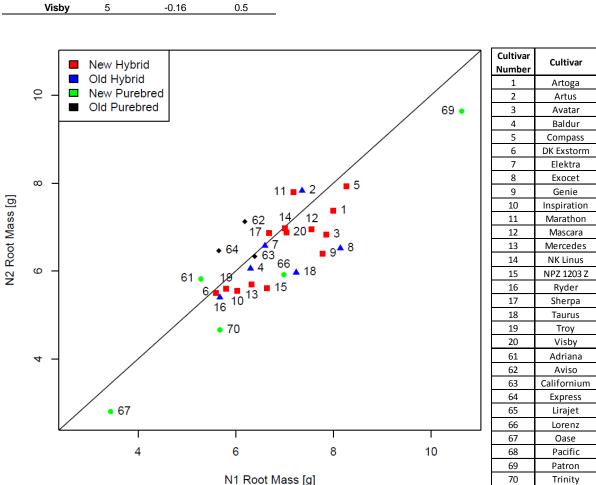


Figure 19: Root mass under no N fertilization (N1) and 200 kg/ha N fertilization (N2).

3.1.4 Nitrogen Use Efficiency

NUE, calculated using Equation 1, was lower under N2 than N1 (Figure 20), with the exception of a few cultivars (Figure 21), although there was less variation in cultivar groups under N2 (Figure 20). The highest NUE for both N1 and N2 was among the purebred cultivars. However, they were each adapted for only one of the N treatments and did poorly in the other (Figure 21). NUE was high under both N treatments for the new hybrids Inspiration, NK Linus and Avatar, as well as the new purebred Adriana (Figure 21). No significant increases or decreases were observed in NUE among the cultivar groups (Figure 20).

Correlation plots show a number of differences among cultivar groups and N treatments. Under N1, root mass and the fine root score correlated positively with traits such as seed mass and NUE (Figure 22). This effect is seen in all cultivar groups except the new hybrids, which show little correlation in these traits (Figure 23). Among the purebreds, there was an increase in correlation between root score and seed mass from old to new, however, among the hybrids this correlation decreased from old to new (Figure 23). Under N2, much of the correlations of root characteristics to seed mass and NUE were absent (Figure 22). New purebreds had a negative correlation of root length with NUE under N fertilization. However, correlation plots should be interpreted with caution as the sample size is quite low (especially in the purebred lines), and should be used only as a guide for possible further investigations.

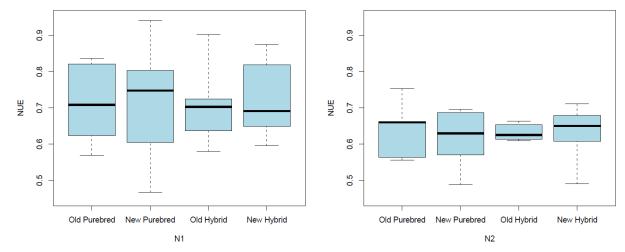


Figure 20: Nitrogen use efficiency (NUE) of *B. napus* cultivar groups under no N fertilization (N1) and 200 kg/ha N fertilization (N2). NUE calculated using Equation 1.

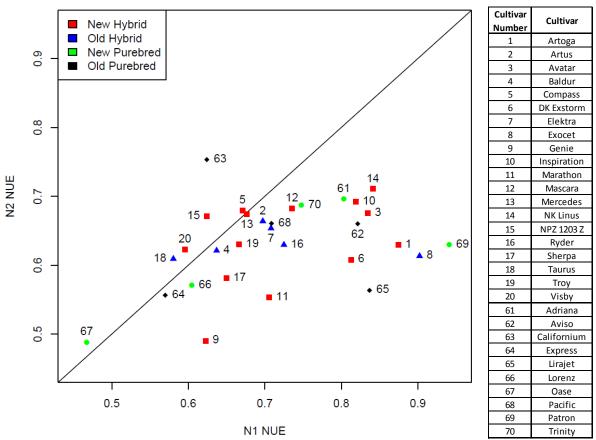


Figure 21: Nitrogen Use Efficiency (NUE) under no N fertilization (N1) and 200 kg/ha N fertilization (N2). NUE calculated using Equation 1.

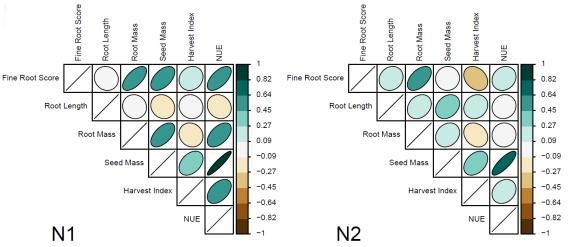


Figure 22: Correlation plots for specific phenotypic traits among B. napus cultivars under no N fertilization (N1) and 200 kg N/ha (N2). NUE calculated using Equation 1.

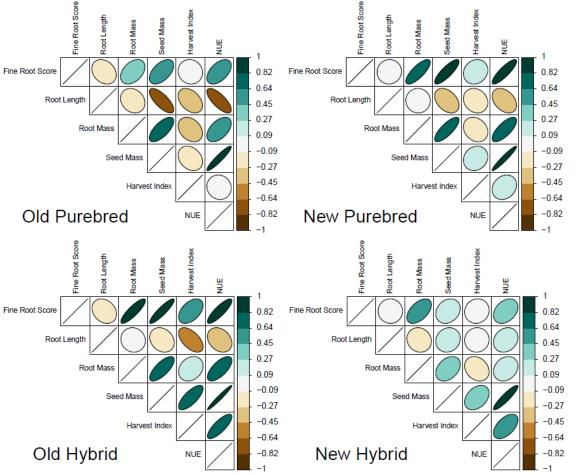


Figure 23: Correlation plots for specific phenotypic traits among *B. napus* cultivar groups under no N fertilization (N1). NUE calculated using Equation 1.

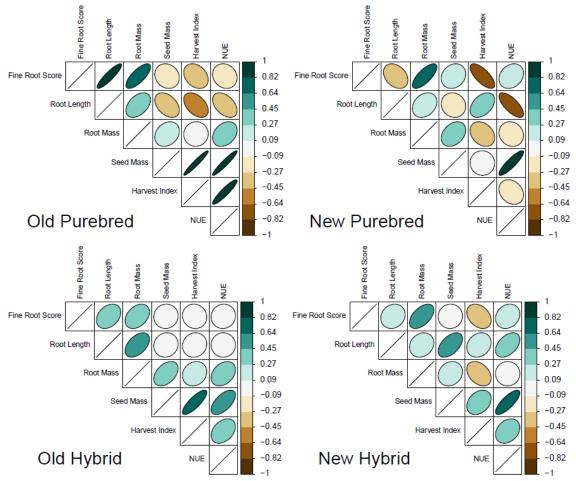


Figure 24: Correlation plots for specific phenotypic traits among *B. napus* cultivar groups under 200 kg/ha N fertilization (N2). NUE calculated using Equation 1.

3.2 Genotypic Data

Purebred lines had very low levels of heterozygosity, ranging from 0.2 - 8.6 %, with the exception of 2 purebred lines (Figure 25), at 29.3 and 24.2 % (Table 8). Heterozygosity in the hybrids ranged from 23.5 – 54.6 % (Table 8), distributed throughout the A and C genome (Figure 25). Of the 52157 SNP markers that were assayed, 5480 – 9030 markers were not detected, and for the hybrid corrections utilizing their parents markers, 193 – 5107 markers were determined to be incorrect, resulting in a failure range from 10.7 - 22.3 % (Table 8).

Table 8: Marker data information for each of the cultivars used in this study along with the parental lines of all hybrid cultivars. L = purebred, H = hybrid, X = parent 1, Z = parent 2.

= parent 2.										
	L01	L02	L03	L04	L05	L06	L07	L08	L09	L10
Missed	5677	5693	6172	5630	8077	5770	6682	5825	5783	5810
Homozygote	46377	45435	42071	46438	31149	45899	41856	46210	46215	42820
Heterozygote	103	1029	3914	89	12931	488	3619	122	159	3527
Total	52157	52157	52157	52157	52157	52157	52157	52157	52157	52157
Heterozygosity [%]	0.2	2.2	8.5	0.2	29.3	1.1	8.0	0.3	0.3	7.6
Failed [%]	10.9	10.9	11.8	10.8	15.5	11.1	12.8	11.2	11.1	11.1
	H01	H02	H03	H04	H05	H06	H07	H08	H09	H10
Missed	6416	5947	7838	6431	5670	5408	6224	5560	6272	6878
One-copy	1083	1195	794	958	944	1287	973	1199	951	1090
Homozygote	34049	33221	30227	30083	31849	35581	30967	35411	32385	31511
Heterozygote	10075	9626	9638	13158	12625	9688	12389	9694	11836	9906
Incorrect	534	2168	3660	1527	1069	193	1604	293	713	2772
Total	52157	52157	52157	52157	52157	52157	52157	52157	52157	52157
Heterozygosity [%]	28.7	28.0	31.1	42.4	38.5	26.3	38.8	26.5	35.5	30.4
Failed [%]	13.3	15.6	22.0	15.3	12.9	10.7	15.0	11.2	13.4	18.5
	H11	H12	H13	H14	H15	H16	H17	H18	H19	H20
Missed	7669	6162	5522	6537	6236	5763	6246	6912	6685	5952
One-copy	875	1059	817	1674	783	3328	759	785	761	1766
Homozygote	29202	34912	34839	29400	33621	31066	31099	26646	30702	31382
Heterozygote	11410	8458	10684	9439	10939	9747	11285	14976	11543	10608
Incorrect	3001	1566	295	5107	578	2253	2768	2838	2466	2449
Total	52157	52157	52157	52157	52157	52157	52157	52157	52157	52157
Heterozygosity [%]	37.9	23.5	30.0	30.4	31.8	28.3	35.4	54.6	36.7	32.0
Failed [%]	20.5	14.8	11.2	22.3	13.1	15.4	17.3	18.7	17.5	16.1
	X01	X02	X03	X04	X05	X06	X07	X08	X09	X10
Missed	5674	5825	5848	5819	5925	5860	5819	5772	5925	6544
Homozygote	46307	44790	44484	42511	44220	46199	42511	46098	44220	41701
Heterozygote	176	1542	1825	3827	2012	98	3827	287	2012	3912
Total	52157	52157	52157	52157	52157	52157	52157	52157	52157	52157
Heterozygosity [%]	0.4	3.3	3.9	8.3	4.4	0.2	8.3	0.6	4.4	8.6
Failed [%]	10.9	11.2	11.2	11.2	11.4	11.2	11.2	11.1	11.4	12.5
	X11	X12	X13	X14	X15	X16	X17	X18	X19	X20
Missed	5943	6417	5848	6417	5839	9440	5822	5819	5839	5822
Homozygote	45032	42947	44484	42947	45247	39129	44014	42511	45247	44014
Heterozygote	1182	2793	1825	2793	1071	3588	2321	3827	1071	2321
Total	52157	52157	52157	52157	52157	52157	52157	52157	52157	52157
Heterozygosity [%]	2.6	6.1	3.9	6.1	2.3	8.4	5.0	8.3	2.3	5.0
Failed [%]	11.4	12.3	11.2	12.3	11.2	18.1	11.2	11.2	11.2	11.2
	Z01	Z02	Z03	Z0 4	Z05	Z06	Z07	Z08	Z09	
Missed	6142	6996	5703	6421	6243	6015	5965	6094	5691	Z10 6094
Homozygote	6142 45569	6996 41483	5703 45777	6421 43948	6243 44103	46062	5965 45929	6094 45595	46369	6094 45595
Heterozygote	45569 446	41483 3678	45777 677	43948 1788	44103 1811	46062 80	45929 263	40090 468	46369 97	45595 468
Total	440 52157	52157	52157	52157	52157	52157	203 52157	400 52157	97 52157	400 52157
Heterozygosity [%] Failed [%]	1.0 11.8	8.1 13.4	1.5 10.9	3.9 12.3	3.9 12.0	0.2 11.5	0.6 11.4	1.0 11.7	0.2 10.9	1.0 11.7
	Z11	Z12	Z13	Z14	Z15	Z16	Z17	Z18	Z19	Z20
Missed	5985	5836	5553	9030	5679	6241	5861	6013	5802	7915
Homozygote	46039	45329	46550	41665	46012	45738	46086	43473	45203	33530
Heterozygote	133	992	54	1462	466	178	210	2671	1152	10712
Total	52157	52157	52157	52157	52157	52157	52157	52157	52157	52157
Heterozygosity [%]	0.3	2.1	0.1	3.4	1.0	0.4	0.5	5.8	2.5	24.2
Failed [%]	11.5	11.2	10.6	17.3	10.9	12.0	11.2	11.5	11.1	15.2

Chr. 1	Chr. 2	Chr. 3	Chr. 4	Chr. 5	Chr. 6	Chr. 7	Chr. 8	Chr. 8	9 Chr. 10
									_
									_
		_							
									

a)

_					
					+
					i
					T
					╇
					+
	1				
					i n
					<u></u>
					╋━━━
					+
					í
					1
					+
					+
					<u>+</u>
					

b)

Figure 25: (previous pages) Map of the *B. napus* (a) A genome and (b) C genome displaying heterozygosity (blue bars) of the 10 purebred lines, 20 hybrids and their parents.

R code was successfully used to identify markers which are associated with specific phenotypic traits using Wilcoxon rank-sum tests (Table 13). This was performed with seed mass under N1 and N2 (Table 10: Table 11) and NUE under N1 and N2 (Table 10; Table 12). By using Wilcoxon rank-sum tests it is possible to identify differences between the markers one wants to target, e.g., between homozygous and heterozygous markers (e.g., Table 11a), or between markers which may be present in one copy vs. two (e.g., Table 11b), or between missing and present markers (e.g., Table 11c). Incorporating this into R code enabled the ability to perform these tests on all 36,456 markers which showed variation, in a high-throughput fashion. In addition to identifying significant markers, the marker type of each genotype at that particular marker is displayed from lowest to highest in the tables, according to their rank for that phenotype (see Tables 9-12). Along with this, a score for each marker type present was calculated by determining the average ranking, amongst the 30 cultivars. This can help give an idea of the positive or negative correlations that the particular marker type might incur. In the last column, the original SNP variation in the 30 genotypes is listed. In total, this enables the examination of each marker with more detail to determine if there are positive or negative correlations with specific marker types, and to help determine potential false positives.

For NUE under N1, heterozygosity had positive impact on NUE for all but two of the markers identified as significant at p < 0.01, (Table 10a). Whereas under N2, heterozygosity had a negative impact on NUE for all but two of the significant markers

(Table 12a). In addition, Wilcoxon pairwise rank sum tests identified 5 markers in which their absence had a negative impact on NUE under N2 (Table 12b). For seed mass under N1, heterozygosity had a positive impact on seed mass for most of the significant markers (Table 9a). In addition 2 markers were identified whose absence had a positive impact on seed mass under N2 (Table 9c). For seed mass under N2, heterozygosity had both positive and negative impacts on seed mass for the markers identified as significant (Table 11a). Additionally there were seven markers with which their absence had negative effects on seed mass under N2 (Table 11c).

At p < 0.01, there were very few markers that were significant between each test, except for NUE and seed mass under N1, which saw 28 of the 30 NUE markers also associated with seed mass (Table 13; Table 14). At p < 0.05, there was a much greater percentage of markers similar between each comparison. However, only 32 of the 294 NUE markers under N1 were shared with NUE under N2 (Table 13; Table 14). In total, 29 of the markers were shared among all tests (seed mass and NUE under both N treatments) when run at p < 0.05 (Table 15), and of those mapped to the *B. napus* genome, all were located in a small region on chromosome C 05.

Table 9 (following pages): Markers associated with seed mass under no N fertilization using Wilcoxon rank-sum tests with significance set to p < 0.01. For each marker, the genotype's marker type is displayed from lowest to highest (Table 5), along with a calculated score for each marker present, and the original SNP variation in the 30 genotypes. (a) markers in which homozygosity and heterozygosity differed, (b) markers in which single copy differed from two copies, and (c) markers in which presence and absence differed. "0" = missing, "1" = single copy, "2" = homozygotic, "3" = heterozygotic, "4" = incorrect.

a)

<u>a)</u>										
	Marker	Chr	Pos	Marker Order (Lowest -> Highest)	0	1	2	3	4	Variation
1	Bn-A01-p1067371	1	652869	222422222222222222222222222323033	21.0		13.4	27.8	4.0	G K failed
2	Bn-A01-p1770291	1	1310265	2222222222222222222222222222222233			14.5	29.5		ΤY
3	Bn-A01-p1770482	1	1310457	222222222222222222222222222222233			14.5	29.5		CM
4	Bn-A01-p2403471	1	1894127	22222222222222222222222222232222233			14.2	27.3		AR
5	Bn-A01-p2421445	1	1912045	22222222222222222222222222232222233			14.2	27.3		GR
6	Bn-A02-p6147730	2	3316152	2222221222222222322223232323233		7.0	13.3	25.2		GKT
7	Bn-A02-p6147823	2	3316245	22222222222222222322223232323233			13.1	25.2		AGR
8	Bn-A03-p27377729	3	25635715	222202140242132221222303323333	12.3	12.7	12.3	24.9	9.5	C T Y failed
9	Bn-A04-p313091	4	257015	22222222222222222222222222222223233			14.0	28.7		ТΥ
10	Bn-A04-p313410	4	257334	222222222222222222222222222222223233			14.0	28.7		ТΥ
	Bn-A04-p313935	4	257859	22222222222222222222222222222223233			14.0	28.7		CY
		4	258364	222222222222222222222222222222223233			14.0	28.7		GR
	Bn-A04-p314536	4	258460	222222222222222222222222222222222222222			14.0	28.7		GR
	Bn-A04-p314872	4	258796	2222222222122222222222222223233		11.0	14.2	28.7		ТΥ
	Bn-A04-p324144	4	268118	222222222212222222222222222223233		11.0	14.2	28.7		CY
	Bn-A04-p325019	4	268690	222222222212222222222222222223233		11.0	14.2	28.7		КТ
17	Bn-A04-p326007	4	269680	222222222222222222222222222222222222222			14.0	28.7		КТ
	Bn-A04-p664994	4	540419	222222222222222222222222222223233			13.7	27.5		AM
	•	4	542345	222222222222222222222222222223233			13.7	27.5		GR
		4	545975	2222222222222222222222222222222223233			13.7	27.5		GR
	Bn-A04-p726356	4	602860	222222222222222222222222222222222233	24.0		13.7	28.7		A R failed
	Bn-A04-p757668	4	628867	22222222222222222222222222222222233	24.0		13.7	28.7		G R failed
	Bn-A04-p783339	4	654736	22222222222222222222222222222222223233	24.0		13.7	27.5		GK
	Bn-A04-p784708	4	656105	22222222222222222222222222222223233			13.7	27.5		ТҮ
	Bn-A04-p785628	4	657029	22222222212222222222222223233		11.0	13.8	27.5		AR
	Bn-A04-p792399	4	663829	22222222221222222222222222223233		11.0	13.8	27.5		GS
	Bn-A04-p809984	4	686044	2222222222222222222222222222222223233		11.0	14.0	28.7		AR
	Bn-A04-p810039	4	686099	2222222222222222222222222222222222		24.0	13.7	28.7		ТҮ
	Bn-A04-p810166	4	686226	222222222222222222222222222222222222222		24.0	13.7	28.7		AR
	Bn-A04-p810935	4	686983	222222222212222222222222232233		11.0	13.8	27.5		CY
	Bn-A04-p813173	4	689173	22222222212222222222222222223233		11.0	14.2	28.7		AR
	Bn-A04-p814033	4	690032	22222222222222222222222222222222233		11.0	14.0	28.7		СМ
	Bn-A04-p928350	4	798300	222222222222222222222222222222222222222			14.0	28.7		TY
	Bn-A04-p1718248	4	1443179	2222222221222222222222222222333		11.0	14.2	28.7		AM
	Bn-A04-p2282199	4	1718920	22222222222222222222222222222223233		11.0	13.7	27.5		ΤY
	Bn-A04-p2152528	4	1829861	22222222222222222222222222222223233			13.7	27.5		ΤY
37	Bn-A04-p2152171	4	1830215	22222222212222222222222223233		11.0	13.8	27.5		AM
38		4	1830804	222222222222222222222222222222223233		11.0	13.7	27.5		GR
39	Bn-A04-p2146459	4	1836075	22222222222222222222222222222223233			13.7	27.5		CY
40		4	16299897	222222222322323232323232323333			11.8	21.9		СТҮ
	Bn-A04-p16166839	4	16368214	2222222223313222232333232323333		12.0	11.5	21.3		ACM
42		6	23504975	32222222222222233222332323333		12.0	12.3	22.0		ACM
43	Bn-A07-p15816246	7	17723487	2221222222122222222222222222332333		7.5	13.0	28.0	25.5	GR
43	Bn-A07-p17047263	7	18952770	222222222222222222222222222222222222222		7.5	14.2	20.0	20.0	AM
44		8	7646302	222222222222222222222222222222222222222			14.2	27.8		TY
-						7.0				GR
	Bn-A08-p10031059	8	8030469	2222221222222222222222222223233		7.0	13.9	27.8		
47	Bn-A08-p16562035	8	14030897	222322222223322232233333			12.2	21.3	10.0	AGR
	Bn-A10-p7444203	9	5779828	33243222242242222222224222222			17.7	2.7	12.8	GKT
	Bn-A10-p10613361	10	11975797	232322332222222222222222222222222222222			17.1	5.3		CM
	Bn-A10-p11311425	10	12610488	232322332222222222222222222222222			17.1	5.3		ΤΥ
	Bn-A10-p13028260	10	13064168	232322332222222222222222222222222222222			17.1	5.3		AR
	Bn-A10-p13190230	10	13228578	232322332222222222222222222222222222222			17.1	5.3		AR
	Bn-A10-p13335021	10	13379963	23233233322222233222222222222222			18.0	8.5		CTY
	Bn-A10-p14327285	10	14264190	2222222332222222222332223333			13.0	22.3		AGR
	Bn-A10-p14365581	10	14309162	2222222232222222222222322223333			13.3	24.2		СТҮ
	Bn-A10-p14384277	10	14329379	22222222222222222222222222222222233			14.5	29.5		CY
	Bn-scaff_20210_1-p161976	11	8221432	23233233333233233223222222222			19.4	11.1		СТҮ
	Bn-scaff_17517_1-p330218	11	30559418	2222222222222222222222331223332		24.0	13.0	25.8		AGR
	Bn-scaff_17517_1-p330557	11	30559758	2222222222222222222222332223332			13.4	25.8		СТҮ
	Bn-scaff_17517_1-p330624	11	30559825	2222222222222222222222331223332		24.0	13.0	25.8		СТҮ
	Bn-scaff_17517_1-p332460	11	30561660	2222222222222222222222332223332			13.4	25.8		GKT
62	Bn-scaff_17036_1-p179776	11	32259345	222222232232242333222334323333			10.8	21.2	19.0	СТҮ
63	Bn-scaff_15794_2-p80390	11	32593360	22224232222222333223333224333			11.6	21.4	16.0	СТҮ
64	Bn-scaff_15877_1-p617921	13	4284222	232332332222322232222222222222222222222			17.7	8.1		СТҮ
	Bn-scaff_16534_1-p1458867	14	4097414	222222222222222222222222332323232323			13.5	25.6		GKT
	Bn-scaff_16534_1-p1482507	14	4120900	2222222222222222222222222332323232323			13.5	25.6		СТҮ
	Bn-scaff_16534_1-p1500199	14	4138594	222222222222222222222222332323232323			13.5	25.6		AGR
07										
	Bn-scaff_15908_1-p557100	14	5715418	222222222222222222222222222222222222222			13.8	26.3		AGR

a) continued...

a)	continuea									
	Marker	Chr	Pos	Marker Order (Lowest -> Highest)	0	1	2	3	4	Variation
70	Bn-scaff_20901_1-p660528	15	3377431	222222222322222222222232323233			13.4	24.0		CY
71	Bn-scaff_20901_1-p653492	15	3384467	22222222232222222222332323333			12.3	24.3		СТҮ
72	Bn-scaff_18181_1-p960226	15	6841151	2420222222222222223322223333	11.0		13.5	26.2	2.0	A T W failed
73	Bn-scaff_25878_1-p8784	16	21049946	222222222222222222222222222222222222222			13.8	26.3		GR
74	Bn-scaff_15746_1-p84688	16	21099359	222222222222222222222222222222222222222			13.8	26.3		ΚT
75	Bn-scaff_18439_1-p208544	16	24118166	33233233332322222422232224222			18.8	8.1	22.5	ΤY
76	Bn-scaff_15892_1-p1657890	16	27476177	232332223222222222222222222222222222222			17.1	5.0		CY
77	Bn-scaff_21711_1-p18343	17	31801361	22232222232222332222333223332			12.3	21.0		AGR
78	Bn-A08-p20245485	18	19536129	232332322222222222222222222222222222222			17.2	4.5		AR
79	Bn-A01-p1423163	NA	NA	22222222222222222222222222222222233			14.5	29.5		AM
80	Bn-A01-p1578682	NA	NA	22222222222222222222222222222222233			14.5	29.5		CM
81	Bn-A01-p1746226	NA	NA	22222222222222222222222222222222233			14.5	29.5		GK
82	Bn-A01-p1773289	NA	NA	22222222222222222222222222222222233			14.5	29.5		AR
83	Bn-A01-p2177864	NA	NA	22222222222222222222222222222222233			14.5	29.5		КT
84	Bn-A01-p2448162	NA	NA	22222222222222222222222222232222233			14.2	27.3		ТW
	Bn-A01-p2504370	NA	NA	00022202222222320202232303233	11.0		14.0	25.0		G K T failed
	Bn-A03-p14927037	NA	NA	202002222422223322223323323033	9.8		13.3	23.8	10.0	A G R failed
	Bn-A04-p1001237	NA	NA	22222222222222222222222222223233			13.7	27.5		AR
	Bn-A04-p1007534	NA	NA	222222222222222222222222222232233			13.7	27.5		ΤY
	Bn-A04-p1009976	NA	NA	2222222222122222222222222223233		11.0	13.8	28.7	24.0	CY
	Bn-A04-p1048288	NA	NA	22222222222222222222222222223233			13.7	27.5		AM
	Bn-A04-p262404	NA	NA	2222222222222222222222222222222223233			14.0	28.7		СМ
	Bn-A04-p288906	NA	NA	222222222222222222222222222222223233			14.0	28.7		ΤY
	Bn-A04-p312324	NA	NA	22222222221222222222222222223233		11.0	14.2	28.7		CY
	Bn-A04-p320972	NA	NA	222222222222222222222222222222223233			14.0	28.7		AR
	Bn-A04-p322820	NA	NA	222222222222222222222222222222223233			14.0	28.7		КТ
	Bn-A04-p534430	NA	NA	222222222222222222222222222232233			13.7	27.5		КТ
	Bn-A04-p534845	NA	NA	22222222222222222222222222223233			13.7	27.5		AR
	Bn-A04-p541336	NA	NA	222222222242222222222222232233			13.8	27.5	11.0	AR
	Bn-A04-p761383	NA	NA	22222222222222222222222222223233			13.7	27.5		КТ
	Bn-A04-p808834	NA	NA	2222222222222222222222222222223233			14.0	28.7		GK
	Bn-A04-p926916	NA	NA	2222222222222222222222222222223233	24.0		13.7	28.7		T Y failed
	Bn-A04-p932865	NA	NA	2222222222222222222222222222222223233			14.0	28.7		AR
	Bn-A04-p980952	NA	NA	22222222222222222222222222223233			13.7	27.5		GK
	Bn-A04-p982068	NA	NA	22222222212222222222222232233		11.0	13.8	27.5		AR
	Bn-A06-p24284014	NA	NA	2222221222222222222222222223233	10.0	7.0	13.9	27.8		TY
	Bn-A06-p24319329	NA	NA	22222202212022210022233233203	16.6	13.0	11.9	25.5		G K T failed
	Bn-A06-p25343454	NA	NA	222222222222222222222222222222222222222	18.0		13.4	27.8	10.0	A G R failed
	Bn-A06-p25345586	NA	NA	222222222222222222222222222222222222222			13.4	27.8	18.0	ACM
	Bn-A06-p5944090	NA	NA	20242222222222224223322223333	2.0		13.5	26.2	11.0	A T W failed
	Bn-A07-p16406072	NA	NA	232332223222222222222222222222222222222			17.1	5.0		T Y T Y
	Bn-A08-p20244218	NA	NA	23233232222222222222222222222222222222			17.2	4.5		TY
	Bn-A08-p4876592	NA	NA			7.0	17.1	5.3		
	Bn-A08-p8589613	NA	NA	22222212222222222222222222223233		7.0	13.9	27.8		TY TY
	Bn-A08-p8703472	NA NA	NA	222222222222222222222222222222223233 322332232333232232			13.6	27.8		GKT
	Bn-A08-p8716833	NA	NA NA	232322332222222222222222222222222222222			18.2 17.1	9.1 5.3		GR
	Bn-A10-p10996646	NA	NA				13.8	26.3		TY
	Bn-scaff_15746_1-p403163	NA		222222222222222222222222222222222222222			13.8	4.2	10.0	
	Bn-scaff_15892_1-p114893 Bn-scaff_15892_1-p114985	NA	NA NA	332332223222222224222222222222222222222			17.8	4.2	18.0 18.0	A R K T
	Bn-scaff_15892_1-p115171	NA	NA	332332223222222222222222222222222222222			17.0	4.2 5.0	10.0	GR
	Bn-scaff_15892_1-p1122157	NA	NA	232332223222222222222222222222222222222			17.1	5.0		KT
	Bn-scaff_15892_1-p122759	NA	NA	232332223222222222222222222222222222222			17.1	5.0		CY
	Bn-scaff 16064 1-p1442106	NA	NA	232332333222222222222222222222222222222			17.9	5.8		GS
	Bn-scaff_16209_1-p129602	NA	NA	222222242314142023222331303313	21.0	19.3	9.9	22.9	11.3	A G R failed
	Bn-scaff_16244_1-p25214	NA	NA	222222222222222222222222222302223332	23.0		13.4	26.5		G K T failed
	Bn-scaff_16244_1-p28539	NA	NA	222222222222222222222222332223332			13.4	25.8		AGR
	Bn-scaff_16244_1-p8089	NA	NA	2222222222222222222222222332223332			13.4	25.8		CTY
	Bn-scaff 16534 1-p1474844	NA	NA	2222222222222222222222222222233232323232			13.5	25.6		CTY
	Bn-scaff_17517_1-p353394	NA	NA	2222222222222222222222222302223332	23.0		13.4	26.5		A G R failed
	Bn-scaff_17517_1-p354243	NA	NA	222222222222222222222222332223332			13.4	25.8		ACM
	Bn-scaff_17517_1-p354525	NA	NA	22222222222222222222222332223332			13.4	25.8		СТҮ
	Bn-scaff_18439_1-p203550	NA	NA	332332333323222224222232224222			18.8	8.1	22.5	KT
	Bn-scaff_18656_1-p53047	NA	NA	22222222221222022122223223233	15.0	14.5	13.5	27.5		C Y failed
	Bn-scaff_18656_1-p54366	NA	NA	222222222222222222222222222222222222222	24.0		13.7	28.7		A R failed
	Bn-scaff_18656_1-p54679	NA	NA	2222222222222222222222222222223233			13.7	27.5		TW
	Bn-scaff_20901_1-p653379	NA	NA	22212222322222222222323333		4.0	13.2	24.4		СТҮ
	Bn-scaff_20901_1-p857332	NA	NA	22222222222222222222222222322322	1	-	13.9	26.0		AGR
	Bn-scaff_22350_1-p24061	NA	NA	2222222222232222222222222323233			13.7	24.6		GK
	Bn-scaff_26946_1-p37150	NA	NA	222222222222222222222222222222233	24.0		13.7	28.7		T Y failed
	Bn-Scaffold000203-p50466	NA	NA	22224222222222342223332320033	27.5		11.7	23.7	11.0	C T Y failed
		• • •							-	

	۰.
n	۱.
IJ	
~	

	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation
1	Bn-A04-p560622	4	441599	22222222223222222222222222221211		28.7	14.2	11.0		CY
2	Bn-scaff_17487_1-p416211	19	6588547	22243333234223222222323121311		27.8	14.3	13.8	7.5	AGR
З	Bn-scaff_15701_1-p214816	19	10183356	222232332242322222222322121311		27.8	13.7	13.8	11.0	AGR
4	Bn-scaff_28725_1-p150634	19	10403607	202232332242322222222322121311	2.0	27.8	14.3	13.8	11.0	C Y failed
5	Bn-scaff_17869_1-p416439	19	12959541	202232332243322222222322121311	2.0	27.8	14.5	13.6	11.0	A C M faile
6	Bn-scaff_17888_1-p183402	19	15811513	332332232333332233232333221211		28.7	15.9	12.8		GKT
7	Bn-scaff_17888_1-p173470	19	15823395	332332232343032203232333121211	15.0	27.8	15.0	12.5	11.0	AGR failed
8	Bn-scaff_15701_1-p121620	NA	NA	222232332202322222222322121311	11.0	27.8	13.7	13.8		G K T failed
;)										
	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation
1	Bn-scaff_18310_1-p635376	NA	NA	2323322223232222322233232320030	28.3		13.5	15.0		C T Y failed
2	Bn-scaff 18936 1-p358822	NA	NA	22223243232322223222322322320300	28.7		13.6	15.9	7.0	A G R failed

Table 10: Markers associated with nitrogen use efficiency (NUE) under no N fertilization using Wilcoxon rank-sum tests with significance set to p < 0.01. For each marker, the genotype's marker type is displayed from lowest to highest (Table 5), along with a calculated score for each marker present, and the original SNP variation in the 30 genotypes. (a) markers in which homozygosity and heterozygosity differed, and (b) markers in which single copy differed from two copies. "0" = missing, "1" = single copy, "2" = homozygotic, "3" = heterozygotic, "4" = incorrect. NUE calculated using Equation 1.

a)

<u>a</u>)	Manlan a	01	Dee	Martha a Orada a (Laura at a Ulinha at)			•			Manlatlan
	Marker	Chr	Pos	Marker Order (Lowest -> Highest)	0	1	2	3	4	Variation
	Bn-A01-p2403471	1	1894127	222222222222222222222222222222222222222			14.1	27.7		AR
	Bn-A01-p2421445	1	1912045	222222222222222222222222222222222222222			14.1	27.7		GR
	Bn-A04-p556991	4	437301	222222222222222222232223332			13.6	25.0		СМ
	Bn-A04-p664994	4	540419	2222222222222222222222222232223332			13.8	26.8		AM
	Bn-A04-p665932	4	542345	222222222222222222222222232223332			13.8	26.8		GR
	Bn-A04-p669182	4	545975	2222222222222222222222222232223332			13.8	26.8		GR
7	Bn-A04-p783339	4	654736	2222222222222222222222222232223332			13.8	26.8		GK
	Bn-A04-p784708	4	656105	2222222222222222222222222232223332			13.8	26.8		ΤY
9	Bn-A04-p785628	4	657029	222222222222222222222232223332		18.0	13.6	26.8		AR
10	Bn-A04-p792399	4	663829	222222222222222222222222222222222222222		18.0	13.6	26.8		GS
11	Bn-A04-p810935	4	686983	222222222222222222222222222232223332		18.0	13.6	26.8		СҮ
12	Bn-A04-p2282199	4	1718920	2222222222222222222222222232223332			13.8	26.8		ΤY
13	Bn-A04-p2152528	4	1829861	2222222222222222222222222232223332			13.8	26.8		ΤY
14	Bn-A04-p2152171	4	1830215	222222222222222222222222222232223332		18.0	13.6	26.8		AM
15	Bn-A04-p2151567	4	1830804	2222222222222222222222222232223332			13.8	26.8		GR
16	Bn-A04-p2146459	4	1836075	2222222222222222222222222232223332			13.8	26.8		СҮ
	Bn-A10-p13335021	10	13379963	223323332333222222222222222222222222222			18.4	7.6		СТҮ
18	Bn-A01-p2448162	NA	NA	222222222222222222222222222222222222222			14.1	27.7		ΤW
19	Bn-A04-p1001237	NA	NA	2222222222222222222222222232223332			13.8	26.8		AR
20	Bn-A04-p1007534	NA	NA	2222222222222222222222222232223332			13.8	26.8		ΤY
21	Bn-A04-p1048288	NA	NA	2222222222222222222222222232223332			13.8	26.8		AM
22	Bn-A04-p534430	NA	NA	2222222222222222222222222232223332			13.8	26.8		КТ
23	Bn-A04-p534845	NA	NA	2222222222222222222222222232223332			13.8	26.8		AR
24	Bn-A04-p541336	NA	NA	222222222222222222222222222222222222222			13.6	26.8	18.0	AR
25	Bn-A04-p557097	NA	NA	2222222222222222223222232223332			13.6	25.0		ΚТ
	Bn-A04-p761383	NA	NA	2222222222222222222222222232223332			13.8	26.8		ΚТ
27	Bn-A04-p980952	NA	NA	2222222222222222222222222232223332			13.8	26.8		GK
28	Bn-A04-p982068	NA	NA	2222222222222222221222232223332		18.0	13.6	26.8		AR
	Bn-scaff_16064_1-p1442106	NA	NA	223322332332222222222222222222222222222			17.6	7.2		GS
	Bn-scaff 18656 1-p54679	NA	NA	2222222222222222222222222232223332			13.8	26.8		ТW
b)					•					
	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation
1	Bn-scaff_17487_1-p1909011	19	8186901	223323223333333221332112222112		24.0	16.1	11.3		AGR
	Bn-scaff_17487_1-p1912492	19	8191474	22332322333233221332112222112		24.0	15.8	11.3		GKT
	Bn-scaff_17487_1-p1927920	19	8201860	223323223333333221332112222112		24.0	16.1	11.3		ACM
4	Bn-scaff_17487_1-p1938942	19	8218945	22332322333233221332112222112		24.0	15.8	11.3		GKT

Table 11: Markers associated with seed mass under N fertilization of 200 kg N/ha using Wilcoxon rank-sum tests with significance set to p < 0.01. For each marker, the genotype's marker type is displayed from lowest to highest (Table 5), along with a calculated score for each marker present, and the original SNP variation in the 30 genotypes. (a) markers in which homozygosity and heterozygosity differed, (b) markers in which single copy differed from two copies, and (c) markers in which presence and absence differed. "0" = missing, "1" = single copy, "2" = homozygotic, "3" = heterozygotic, "4" = incorrect.

``												
a)												
Ĺ	Marker	Chr	Pos	Marker Order (Lowest -> Highest)	0	1	2	3	4	Variation		
1	Bn-A01-p10720611	1	9633959	3033222222020202222222020222222	14.5		17.6	2.7		C Y failed		
2	Bn-A01-p23472380	1	19346196	232223222322213222333233333333		15.0	10.8	20.6		AGR		
3	Bn-A01-p24707425	1	20475601	22224202222222222222222222240333	17.0		13.6	29.0	15.5	C Y failed		
4	Bn-scaff_22466_1-p746149	3	10371383	22022222222224323333133333320	16.5	22.0	9.9	22.5	15.0	C G S failed		
5	Bn-A03-p27377729	3	25635715	22024202421222223213132333303	13.0	17.7	11.5	24.8	7.0	C T Y failed		
6	Bn-A04-p6340854	4	7570612	2232222223222332222233323333333			12.3	21.0		GR		
7	Bn-A04-p6422450	4	7624947	2202222223222432222233323333	3.0		12.3	23.7	15.0	G R failed		
8	Bn-A06-p2676798	6	2619418	22222222232232422323233323323			11.6	21.9	15.0	ACM		
9	Bn-A06-p11239689	6	10450560	222222022222322022233133333223	11.5	22.0	11.7	23.2		A G R failed		
10	Bn-A07-p15428458	7	17342826	222222222222222222222222222222233323			13.5	25.4		ΤY		
11	Bn-Scaffold000827-p421	8	13961418	2222222222322223232323332330323	27.0		11.0	21.8		A C M failed		
12	Bn-A08-p16562035	8	14030897	2222222222322223232323232333323			11.6	22.3		AGR		
13	Bn-A10-p5183890	10	4769396	333222222222222222222222222222222222222	30.0		16.1	2.0	26.0	A G R failed		
14	Bn-A10-p5679914	10	5324731	333222222222222222222222222222222222222	30.0		16.1	2.0	26.0	A G R failed		
15	Bn-A01-p18704834	10	5877343	333222222222222222222222222222222222222	26.0		15.9	2.0	26.0	C T Y failed		
16	Bn-A01-p18890238	10	6093820	33322222222221022222422242220	23.0	15.0	15.9	2.0	24.0	A C M failed		
17	Bn-A01-p19107003	10	6319979	333222222222221222222222222222222222222	30.0	15.0	16.2	2.0	26.0	A G R failed		
18	Bn-A01-p19108849	10	6324178	3332222222222122222222222222242224		15.0	16.2	2.0	28.0	AGR		
19	Bn-A10-p13164379	10	13206159	222222222222222322322302333323	22.0		11.5	23.8		G K T failed		
20	Bn-A10-p13169213	10	13211013	222222222222123222223421333323		18.5	11.7	24.6	22.0	GKT		
	Bn-A10-p14365581	10	14309162	22222222222222222232232222232333			13.0	25.3		СТҮ		
22	Bn-A10-p14429854	10	14376659	222222222222222222322322232233			13.6	24.8		CTY		
23	Bn-A01-p23538267	11	34626593	232223222422220222333233333333	16.0		11.1	21.8	11.0	A G R failed		
24	Bn-scaff_16352_1-p361447	13	15479874	03222222220222332323333443334	6.0		9.8	20.4	27.0	C T Y failed		
25	Bn-scaff_17799_1-p1308909	16	35299460	222222222222222222222222222222222222222			14.5	29.0		ΤY		
26	Bn-scaff_18202_1-p176275	17	23395310	2222222222222022323222223323333	13.0		12.1	24.6		A G R failed		
27	Bn-A01-p18635275	NA	NA	3332222222222224222242222422220	30.0		15.9	2.0	21.3	G K T failed		
28	Bn-A01-p18636804	NA	NA	333222222222222222222222222222222222222	30.0		16.1	2.0	26.0	A G R failed		
29	Bn-A04-p6277634	NA	NA	220222222322230222223332330	16.3		12.3	22.8		K T failed		
30	Bn-A04-p6428686	NA	NA	2222222222322233222233323334			11.9	22.0	30.0	ΤY		
31	Bn-A05-p6480907	NA	NA	22222242222222222233422323323			13.0	25.2	14.5	AGR		
32	Bn-A05-p6480981	NA	NA	22222242222222422233322323323			12.8	24.7	11.5	GKT		
33	Bn-A05-p6534544	NA	NA	222222422222222022233322323323	16.0		12.8	24.7	7.0	G K T failed		
34	Bn-A05-p673050	NA	NA	22220202202202322222333233323	8.8		12.5	24.1		G K T failed		
	Bn-A06-p10594170	NA	NA	22222202222232202323323333223	11.5		11.9	22.7		G K T failed		
	Bn-A10-p14431375	NA	NA	222222222222222222222222222322232			13.8	26.5		AGR		
	Bn-A10-p4968727	NA	NA	333222222222212222222222242220	30.0	15.0	16.2	2.0	26.0	C T Y failed		
	Bn-A10-p4972939	NA	NA	333222222222222222222222222222222222222	30.0		16.1	2.0	26.0	C T Y failed		
	Bn-scaff_18202_1-p182631	NA	NA	222222022222322323222223323333	7.0		12.4	23.3		A T W failed		
40	Bn-scaff_18275_1-p1372103	NA	NA	222222222222222222222222222222222222222	<u> </u>		13.9	25.8		ACM		
b)												
~)	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation		
1	Bn-A08-p16514789	NA	NA	232223302002302121211213114101	14.4	23	2 10.7	3 10.4	4 27	G K T failed		
	DIF-700-P10014708	IN/A	11/4	232223302002302121213114101	14.4	23	10.7	10.4	21	U N I Ialleu		
<u>c)</u>												
	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation		
1	Bn-A01-p5522870	1	5082549	222233222222324322233222000200	27.4		12.9	13.5	15.0	A G R failed		
2	Bn-A09-p29968302	9	27779148	223222423242222220224002240004	24.5		12.4	6.0	19.0	A G R failed		
3	Bn-scaff_16197_1-p3241707	18	31032064	323233323233223222203220220000	26.3		15.5	9.0		C T Y failed		
4	Bn-A05-p673050	NA	NA	22220202202202322222333233323	8.8		12.5	24.1		G K T failed		
	Bn-scaff_16197_1-p3111917	NA	NA	32323332323232222203223220000	26.8		15.5	10.4		A G R failed		
	Bn-scaff_20646_1-p246974	NA	NA	332212223222323220233030340304	24.0	5.0	10.6	15.7	28.0	C T Y failed		
7	Bn-scaff_27076_1-p79989	NA	NA	00023222222223221223222222222	2.0	18.0	17.4	13.7		C M failed		

Table 12: Markers associated with nitrogen use efficiency (NUE) under N fertilization of 200 kg N/ha using Wilcoxon rank-sum tests with significance set to p < 0.01. For each marker, the genotype's marker type is displayed from lowest to highest (Table 5), along with a calculated score for each marker present, and the original SNP variation in the 30 genotypes. (a) markers in which homozygosity and heterozygosity differed, and (b) markers in which presence and absence differed. "0" = missing, "1" = single copy, "2" = homozygotic, "3" = heterozygotic, "4" = incorrect. NUE calculated using Equation 1.

a)										
	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation
1	Bn-A01-p10720611	1	9633959	3003322222002222222022202222222	12.0		18.2	3.3		C Y failed
2	Bn-A03-p24971161	3	23385545	233232322233322322222222222222222222222			18.0	8.6		AGR
3	Bn-A03-p24971360	3	23385744	233232322233322322222222222222222222222			18.0	8.6		AGR
4	Bn-A03-p25009919	3	23409723	2332323232333322322222222222222222			18.4	8.7		СТҮ
5	Bn-A03-p25009925	3	23409729	2332323232333322322222222222222222			18.4	8.7		AGR
6	Bn-A03-p25024647	3	23417138	2332323232333322322222222222222222			18.4	8.7		AGR
7	Bn-A03-p25025360	3	23417857	2332323232333322322222222222222222			18.4	8.7		СТҮ
8	Bn-A03-p26815896	3	25244510	333232334334242422222322222222			20.3	7.7	12.8	AGR
9	Bn-A03-p26822384	3	25252640	333232334333042422222322222222	13.0		20.8	8.1	13.0	C T Y failed
10	Bn-A03-p26931199	3	25395191	333232334333242422222322222222			20.3	8.1	13.0	AGR
11	Bn-A07-p9450863	7	10818136	2322323333332222322222222222222222			18.3	9.0		ΤY
12	Bn-A07-p9468382	7	10825039	2322323333332222322222222222222222			18.3	9.0		ΚT
13	Bn-A07-p12345399	7	14471603	22422221202322042223343333233	13.5	9.0	11.3	24.1	14.3	C T Y failed
14	Bn-A07-p13154645	7	15234994	313232222222222222222222222222222222222	24.0	2.0	17.2	3.0		G R failed
15	Bn-A10-p1125156	10	2416749	333202222222222222222222222222222222222	19.3	24.5	15.5	2.0	27.0	A G R failed
16	Bn-scaff_17721_1-p675626	12	43658302	3332323332322322322222322224222			18.8	9.0	27.0	AGR
17	Bn-A03-p24998976	NA	NA	2332323232333322322222222222222222			18.4	8.7		ACM
18	Bn-A03-p26121502	NA	NA	233232322232323223222222222222222222222			18.0	8.5		AGR
19	Bn-A03-p26822285	NA	NA	333232334333242422212322222222		20.0	20.3	8.1	13.0	AGR
20	Bn-A07-p10409623	NA	NA	333232333332232232233332222222			19.5	10.9		AGR
21	Bn-A07-p13162255	NA	NA	313232222222222222222222222222222222222		13.0	17.2	3.0		GR
22	Bn-A10-p1023294	NA	NA	33322222221222022220242220222	21.3	12.0	16.4	2.0	23.0	C T Y failed
23	Bn-scaff_15763_1-p1048413	NA	NA	313232222222222222222222222222222222222		13.0	17.2	3.0		КТ
24	Bn-scaff_19899_1-p357670	NA	NA	222222222232222332223322323233			12.7	22.0		CTY
b)										
	Marker	Chr	Pos	MarkerOrder (Lowest -> Highest)	0	1	2	3	4	Variation
1	Bn-scaff_20125_1-p306182	15	10902367	000232222242222222232343222222	2.0		16.9	17.8	17.0	A M failed
2	Bn-scaff_15763_1-p622996	16	20178116	00023223231222222222222222222222222222	2.0	11.0	18.1	12.5		A R failed
3	Bn-A04-p5971620	NA	NA	00023222230222222222232223222	4.3		17.5	16.0		C T Y failed
4	Bn-A06-p17010360	NA	NA	020202220223332322223223322233	4.5		15.5	20.4		C T Y failed
5	Bn-scaff_15844_1-p163992	NA	NA	2022022202032223322332323232323232	6.8		14.6	21.1		A G R failed

Table 13: Number of markers associated with seed mass or nitrogen use efficiency (NUE), under either no N fertilization (N1) or N fertilization of 200 kg N/ha (N2), identifying differences between homozygous or heterozygous markers, one-copy or two-copy and presence or absence. Test were performed using a significance level of (a) p = 0.01 and (b) p = 0.05.

	1-1					_					
		p < 0.01	Homozygous <i>vs.</i> Heterozygous	One Copy <i>vs.</i> Two Copy	Presence <i>vs.</i> Absence	_		p < 0.05	Homozygous <i>vs.</i> Heterozygous	One Copy <i>vs.</i> Two Copy	Presence vs. Absence
	N1	Seed Mass	140	8	2	-	N1	Seed Mass	610	64	36
		NUE	30	4	0			NUE	294	23	27
a)	N2	Seed Mass	40	1	7		N2	Seed Mass	635	7	82
		NUE	24	0	5	_b)	142	NUE	548	0	71

Table 14: The number of similar markers identified as significant for the test of homozygous *vs.* heterozygous, with seed mass and nitrogen use efficiency (NUE) under no N fertilization (N1) and N fertilization of 200 kg N/ha (N2). Test were performed using a significance level of (a) p = 0.01 and (b) p = 0.05.

	p < 0.01	N1 Seed Mass	N2 NUE		p < 0.05	N1 Seed Mass	N2 NUE
	N1 NUE	28	0		N1 NUE	183	32
a)	N2 Seed Mass	3	1	_ b) _	N2 Seed Mass	103	326

Table 15: Markers identified as significant in all Wilcoxon rank-sum tests (seed mass and nitrogen use efficiency (NUE) under no and 200 kg N/ha fertilization) at p < 0.05. NUE calculated using Equation 1.

Marker	Chr	Pos	Marker	Chr	Pos
1 Bn-scaff_16792_1-p35017	15	11084495	19 Bn-scaff_16792_1-p22894	NA	NA
2 Bn-scaff_16792_1-p34725	15	11084787	20 Bn-scaff_16792_1-p27067	NA	NA
3 Bn-scaff_16792_1-p34579	15	11084933	21 Bn-scaff_16792_1-p54796	NA	NA
4 Bn-scaff_16792_1-p34528	15	11084984	22 Bn-scaff_21338_1-p138987	NA	NA
5 Bn-scaff_16792_1-p26742	15	11092753	23 Bn-scaff_21338_1-p151286	NA	NA
6 Bn-scaff_16792_1-p24255	15	11095200	24 Bn-scaff_21338_1-p66728	NA	NA
7 Bn-scaff_16792_1-p21478	15	11097979	25 Bn-scaff_21338_1-p67288	NA	NA
8 Bn-scaff_16792_1-p21096	15	11098361	26 Bn-scaff_21338_1-p71093	NA	NA
9 Bn-scaff_21821_1-p9352	15	11134712	27 Bn-scaff_21338_1-p71950	NA	NA
10 Bn-scaff_21821_1-p18474	15	11145768	28 Bn-scaff_21338_1-p72824	NA	NA
11 Bn-scaff_21821_1-p18810	15	11146104	29 Bn-scaff_21821_1-p32954	NA	NA
12 Bn-scaff_21338_1-p6152	15	11465022			
13 Bn-scaff_21338_1-p8681	15	11467551			
14 Bn-scaff_21338_1-p12356	15	11471226			
15 Bn-scaff_21338_1-p18825	15	11476353			
16 Bn-scaff_21338_1-p22459	15	11480018			
17 Bn-scaff_21338_1-p156935	15	11576396			
18 Bn-scaff_21338_1-p194830	15	11618495			

4 Discussion

4.1 Phenotypic Variation for NUE

Phenotypic data show that indeed some cultivars have a higher NUE and seed yield than others. As expected, due to the progress of breeding programs and hybrid vigor, the new hybrids performed the best for seed and oil yield. This was not the case for NUE, calculated using Equation 1. It was, in fact, purebred lines that scored the

highest NUE under both N treatments. However, these purebred lines scored high under only one of the N treatments, and had an average or poor score under the other. The hybrids were best suited for both N conditions, for root mass, NUE and especially seed and oil yield, the most important traits for farmers. This suggests that the hybrids may have gene combinations optimized for more variable environmental conditions, potentially due the presence of heterozygotic alleles, *i.e.*, heterosis through codominance. It is clear that in general, the hybrids outperform the purebreds in seed yield at both N levels, results which have been seen in other NUE studies (Kessel *et al.*, 2012), and a trend which has been seen in Germany since their adoption (Abbadi & Leckband, 2011).

4.2 Seed Quality

NIRS results indicate that breeding has caused changes in seed quality among *B. napus* cultivars. This is not surprising since seed yield and oil content are often the main goals of *B. napus* breeders, and come at the expense of lower seed protein content. Breeding progress could also be seen in the measurements of the harvest index, which saw increases among the new cultivars, both purebred and hybrid. Compared to the old purebreds, new purebreds had a higher seed oil content under N1, but lower under N2. Since seed oil and seed protein content are known to have a negative correlation (Grami *et al.*, 1977), it can be assumed that under N fertilization, there is less carbon for allocation to oil synthesis, due to an increased consumption of carbon for N metabolism. This can also be seen in the lower seed protein content among all cultivar groups upon N fertilization. Among the hybrids, increased seed mass and seed oil mass coincide with decreased seed protein content compared to purebreds, results which are in line

Derek M Wright

with Koeslin-Findeklee *et al.* (2014) studies on NUE in *B. napus* purebreds and hybrid cultivars. This suggests that breeders goals of increasing seed oil yield may reduce NUE by decreasing seed protein content, and could help explain why the highest NUE scorers under the two N levels were purebreds. In response, increasing both seed oil and protein content has become a goal *B. napus* breeders are exploring by identifying quantitative trait loci (QTL) which control oil content independently of protein content (Zhao *et al.*, 2006). These changes in seed protein content, and thus, N content, impact the calculation of NUE depending on how one measures it. Using Equation 2, NUE is calculated ignoring seed N content, using yield as the relevant parameter. Although Equation 2 is more applicable to farmers and often the only way to calculate NUE with available data, by not accounting for changes in seed N content, calculating NUE with Equation 1 and Equation 2 give different results. Van Sanford & Mackown (1986) distinguished these two methods as NUE for yield (NUEY) and NUE for protein (NUEP), noticing the difference in ranking among cultivars between the two.

4.3 Root Traits in the Context of NUE

One approach to improve NUE, which has attracted some scientists and breeders, is to focus on root characteristics, reviewed by Garnett *et al.* (2009). In this study, root traits were correlated with seed yield and NUE, but not always, which suggests that using root mass or fine root score as an indicator of seed yield or NUE may depend on the genetic background of the plant. As such, root traits might not always be a good selection tool for a breeder, since its applicability may be dependent on the plants NupE and NutE. Under N1, there was a much stronger correlation of seed mass and NUE with root traits compared to N2, suggesting that focusing on root traits may be on benefit

when breeding for *B. napus* crops suitable to low input systems. However, especially with new hybrids, there is little correlation under both N treatments, suggesting that root characteristics have become less important for seed yield and NUE over time, perhaps due to an increased NupE or NutE caused by cell physiological aspects, such as enzyme activity.

Results demonstrate that increases in available N through fertilization cause a shift in *B. napus* root structure, decreasing length and increasing fine root score. This is a little unexpected since high ratios of soil carbon to nitrogen have been shown to inhibit lateral root formation in *Arabidopsis* (Malamy & Ryan, 2001), a close relative of *B. napus*. However, the opposite reaction has been observed in some grass species (Robinson & Rorison, 1987), illustrating the variability of plant root structure responses to different environmental N levels. Interestingly, there were dramatic differences in root mass variation between the old and new purebreds, suggesting a possible diversification of breeding goals, such as resistance and optimization under different environments. Notably, there was less variation in both plant masses and NUE under N fertilization, likely due to the fact that many of these cultivars, especially the new ones, were bred under condition of high N fertilization. Additionally, with the exception of a few cultivars, it appears that even though breeders are not directly selecting for it, root mass seems to be increasing over time with some of the new purebreds and new hybrids.

Variation in root structure was also observed between cultivars, even those with similar seed yields, suggesting there may be diverse strategies to NupE and NutE with respect to root structure among *B. napus* cultivars. Future studies investigating the differences in NUE among *B. napus* cultivars, may benefit by combining phenotype

analysis of root traits such as root mass and fine root score with tools to investigate NupE and NetE, such as the use of ¹⁵N labelling to model N flux as described by Salon *et al.* (2014), or the nitrate update modeling described by Le Deunff & Malagoli (2014) and Malagoli & Le Deunff (2014). The identification of diversity in NupE and NutE along with root traits in *B. napus* cultivars would be of great benefit to breeders for improving NUE and helping to expand our knowledge of it.

4.4 Heterozygosity and NUE

Genotypic analysis using the statistical program R allowed for the creation of reusable code for easy manipulation of large data sets with high-throughput. The use of computer language code for data analysis should allow for future, similar projects to be done in a much faster fashion, as the code can be rerun on new data sets with only small changes to the code, and could further be optimized for easier reusability if desired for continual reuse, which may be of benefit to a breeding/research program.

To my knowledge, this is the first study to investigate the effect of SNP heterozygosity on phenotypic traits in elite *B. napus* cultivars and may provide a valuable tool in the future for investigating heterosis. Markers in which heterozygosity may have an effect on a seed mass or NUE, both positively and negatively were identified. In addition, it was also possible to identify markers with which the presence or absence may have a phenotypic effect. Under N1, heterozygosity of significant markers mainly had a positive impact on NUE. However, under N2 they appeared to have a negative impact, indicating that heterozygosity is more beneficial under lower N levels. Similarly, there were many more markers in which heterozygosity positively impacted seed mass under N1 than N2. This further supports the idea of hybrid cultivars as being

an important tool for breeding for low input systems. Markers with which the absence positively or negatively impacts seed mass or NUE also represent genomic locations of particular interest.

At p < 0.01, 28 of the 30 markers associated with NUE were also associated with seed mass under N1 but only 1 of 24 under N2, illustrating how at low N levels, the genomic regions involved in NUE have a high impact on seed yield compared to high N levels. At p < 0.05, only 32 of the 294 NUE markers under N1 were shared with NUE under N2 (Table 13; Table 14), suggesting that under the different N treatments the genomic regions associated with NUE are very different, illustrating the complexity of the trait. In addition there were 18 markers associated with NUE and seed mass under both N levels and located in a small (534 kbp) region on chromosome C 05, representing a target region for further investigations into NUE.

A legitimate criticism of this study is the potential of false positives from the Wilcoxon rank sum tests, due to population structure. In an attempt to compensate for this, the marker types of each genotype according to their phenotypic rank is listed for all significant markers. While there was much diversity among the top performing cultivars for seed mass and NUE, under N1, a number of the bottom performing cultivars for seed mass and NUE came from Deutsche Saatveredelung. Under N2, the bottom three performing cultivars for both seed mass and NUE came from NUE came from Norddeutsche Pflanzenzucht, indicating that many of the marker types which negatively impact seed mass or NUE under both N treatments could be false positives if they are primarily coming from a single breeding company. As such, the significance of these markers should be taken with a high degree of skepticism.

In conclusion, this strategy could potentially be a useful tool for hybrid plant breeding programs to identify markers useful for selection and help to breed *B. napus* varieties with a higher NUE or seed yield. It could also theoretically be utilized to predict optimal parent combinations for hybrid development, similar to the concept of genomic selection (Heffner *et al.*, 2009), but would require much larger and more diverse data sets, from plants grown in numerous environments, to enable better scoring of each maker type. Using genome wide SNP marker data to predict the general combining abilities of purebred lines, for creating superior hybrids, has been explored in other crops, such as *Zea mays* (maize/corn; Riedelsheimer *et al.*, 2012). Along with this, a more appropriate method for calculating marker scores could be to calculate the average phenotypic value of that marker type, instead of the average ranking amongst the cultivars, as was done in Tables 9-12.

Future studies should focus on replicating and confirming the results. Tests under field conditions would provide data that correlate more with the farmer conditions and which would be more applicable for breeders. Another focus could be on further investigations of the individual markers, which should be in close proximity to genes relating to the phenotype and may be useful for helping to elucidate genes which may play a role under different environmental conditions, such as for NUE at high and low N availability. *e.g.*, Orsel *et al.* (2014) identified 16 cytosolic glutamine synthase genes in the *B. napus* genome which are differentially regulated under different N levels and could help explain why there were so few similar markers identified as significant between N1 and N2 for NUE. Connections between the markers identified in this study and the genes identified by Orsel *et al.* (2014), Avice & Etienne (2014) or the QTLs

identified by Bouchet et al. (2014) and Basunanda et al. (2010) would help validate the

results of this study and the usefulness of its methodology.

References

- Abbadi A & Leckband G (**2011**) Rapeseed breeding for oil content, quality, and sustainability. *European Journal of Lipid Science and Technology*. 113(10): 1198–1206.
- Avice J & Etienne P (**2014**) Leaf senescence and nitrogen remobilization efficiency in oilseed rape (*Brassica napus* L.). *Journal of Experimental Botany*. 65(14): 3813–3824.
- Bannerot T, Boulidard L, Cauderon Y & Tempe J (eds) (**1974**) *Transfer of cytoplasmic malesterility from Raphanus sativus to Brassica oleracea.*
- Baranwal VK, Mikkilineni V, Zehr UB, Tyagi AK & Kapoor S (**2012**) Heterosis: emerging ideas about hybrid vigour. *Journal of Experimental Botany*. 63(18): 6309–6314.
- Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC & Snowdon RJ (**2010**) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). *TAG. Theoretical and applied* genetics. Theoretische und angewandte Genetik. 120(2): 271–281.
- Bouchet A, Nesi N, Bissuel C, Bregeon M, Lariepe A, Navier H, Ribière N, Orsel M, Grezes-Besset B, Renard M & Laperche A (2014) Genetic control of yield and yield components in winter oilseed rape (Brassica napus L.) grown under nitrogen limitation. *Euphytica*. 199(1-2): 183–205.
- Budewig S & Lèon J (eds) (2003) Higher yield stability for oilseed rape hybrids?
- Chalhoub B, Denoeud F, Liu S, Parkin, Isobel A P, Tang H, Wang X, Chiquet J, Belcram H, Tong C & Samans B *et al.* (**2014**) Early allopolyploid evolution in the post-Neolithic *Brassica napus* oilseed genome. *Science*. 345(6199): 950–953.
- Crow JF (1998) 90 Years Ago: The Beginning of Hybrid Maize. *Genetics*. 148: 923–928.
- Darwin C (**1876**) *The Effects of Cross and Self Fertilisation in the Vegetable Kingdom.* John Murray, S.I.
- Davenport CG (1908) Degeneration, albinism and inbreeding. Science: 454–455.
- East EM (**1908**) Inbreeding in corn. In Report of the Connecticut Agricultural Experiment Station for the Year 1907. *New Haven: Connecticut Agricultural Experiment Station:* 419–428.
- Edwards D, Batley J & Snowdon RJ (**2013**) Accessing complex crop genomes with next-generation sequencing. *Theoretical and Applied Genetics*. 126: 1–11.
- Fess TL, Kotcon JB & Benedito VA (**2011**) Crop Breeding for Low Input Agriculture: A Sustainable Response to Feed a Growing World Population. *Sustainability*. 3(12): 1742–1772.

- Frauen M & Paulmann W (eds) (**1999**) Breeding of hybrid varieties of winter oilseed rape based on the MSL-system.
- Friedt W, Lühs W, Müller M & Ordon F (**2003**) Utility of Winter Oilseed Rape (*Brassica napus* L.) Cultivars and New Breeding Lines for Low-input Cropping Systems. *Pflanzenbauwissenschaften*. 7(2): 49–55.
- Friedt W & Snowdon R (**2010**) Oilseed Rape. *Oil Crops* (Vollmann, J. & Rajcan, I., eds), pp. 91–126. Springer New York, New York, NY.
- Garnett T, Conn V & Kaiser BN (2009) Root based approaches to improving nitrogen use efficiency in plants. *Plant, cell & environment*. 32(9): 1272–1283.
- Gehringer A, Snowdon R, Spiller T, Basunanda P & Friedt W (**2007**) New Oilseed Rape (Brassica napus) Hybrids with High Levels of Heterosis for Seed Yield under Nutrient-poor Conditions. *Breeding Science*. 57(4): 315–320.
- Grami B, Stefansson BR & Baker RJ (**1977**) Genetics of protein and oil content in summer rape: heritability, number of effective factors, and correlations. *Canadian Journal of Plant Science*. 57(3): 937–943.
- Hatfield JL & Prueger JH (**2004**) Nitrogen Over-use, Under-use, and Efficiency: USDA-ARD National Soil Tilth Laboratory, 2150 Pammel Drive, Ames, Iowa 50011 USA. New directions for a diverse planet. *Proceedings of the 4th International Crop Science Congress:* 1–15.
- Heffer P (**2013**) Assessment of fertilizer use by crop at the global level 2010-2010/11. http://www.fertilizer.org//En/Statistics/Agriculture_Committee_Databases.aspx.
- Heffner EL, Sorrells ME & Jannink J (**2009**) Genomic Selection for Crop Improvement. *Crop Science*. 49(1): 1.
- Hocking PJ, Randall PJ & DeMarco D (**1997**) The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components. *Field Crops Research*. 54(2-3): 201–220.
- Jones DF (**1922**) The Productiveness of Single and Double First Generation Corn Hybrids. *Agronomy Journal*. 14(6): 241.
- Josefsson E & Appelqvist L (**1968**) Glucosinolates in seed of rape and turnip rape as affected by variety and environment. *Journal of the Science of Food and Agriculture*. 19(10): 564–570.
- Julius Kühn Institut (**2001**) Growth stages of mono-and dicotyledonous plants. *BBCH Skala*.
- Kant S, Bi Y & Rothstein SJ (2011) Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. *Journal of Experimental Botany*. 62(4): 1499–1509.
- Kao HM, Keller WA, Gleddie S & Brown GG (1992) Synthesis of Brassica oleracea/Brassica napus somatic hybrid plants with novel organeile DNA compositions. *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.* 83(3): 313–320.

- Kempe K & Gils M (**2011**) Pollination control technologies for hybrid breeding. *Molecular Breeding*. 27(4): 417–437.
- Kessel B, Schierholt A & Becker HC (**2012**) Nitrogen Use Efficiency in a Genetically Diverse Set of Winter Oilseed Rape (L.). *Crop Science*. 52(6): 2546.
- Koeslin-Findeklee F, Meyer A, Girke A, Beckmann K & Horst WJ (**2014**) The superior nitrogen efficiency of winter oilseed rape (Brassica napus L.) hybrids is not related to delayed nitrogen starvation-induced leaf senescence. *Plant and Soil*. 384(1-2): 347–362.
- Laine P, Ourry A, Macduff J, Boucaud J & Salette J (**1993**) Kinetic parameters of nitrate uptake by different catch crop species: effects of low temperatures or previous nitrate starvation. *Physiologia Plantarum*. 88(1): 85–92.
- Lassaletta L, Billen G, Grizzetti B, Anglade J & Garnier J (**2014**) 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. *Environmental Research Letters*. 9(10): 105011.
- Le Deunff E & Malagoli P (**2014**) An updated model for nitrate uptake modelling in plants. I. Functional component: cross-combination of flow-force interpretation of nitrate uptake isotherms, and environmental and in planta regulation of nitrate influx. *Annals of Botany*. 113(6): 991–1005.
- Leleu O, Vuylsteker C, Têtu J, Degrande D, Champolivier L & Rambour S (**2000**) Effect of two contrasted N fertilisations on rapeseed growth and nitrate metabolism. *Plant Physiology and Biochemistry*. 38(7-8): 639–645.
- Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin, Isobel A P, Zhao M, Ma J, Yu J & Huang S *et al.* (**2014**) The *Brassica oleracea* genome reveals the asymmetrical evolution of polyploid genomes. *Nature Communications*. 5: 3930.
- Malagoli P, Laine P, Rossato L & Ourry A (**2005a**) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (*Brassica napus*) from stem extension to harvest. II. An 15N-labelling-based simulation model of N partitioning between vegetative and reproductive tissues. *Annals of Botany*. 95(7): 1187–1198.
- Malagoli P, Laine P, Rossato L & Ourry A (2005b) Dynamics of nitrogen uptake and mobilization in field-grown winter oilseed rape (*Brassica napus*) from stem extension to harvest: I. Global N flows between vegetative and reproductive tissues in relation to leaf fall and their residual N. *Annals of Botany*. 95(5): 853–861.
- Malagoli P & Le Deunff E (**2014**) An updated model for nitrate uptake modelling in plants. II. Assessment of active root involvement in nitrate uptake based on integrated root system age: measured versus modelled outputs. *Annals of Botany*. 113(6): 1007–1019.
- Moll RH, Kamprath EJ & Jackson WA (**1982**) Analysis and Interpretation of Factors Which Contribute to Efficiency of Nitrogen Utilization1. *Agronomy Journal*. 74(3): 562.

- Muhammad TB, Salmiaton A & Moinuddin G (**2013**) Impact of excessive nitrogen fertilization on the environment and associated mitigation strategies. *Asian Journal of Microbiology, Biotechnology & Environmental Sciences*. 15(2): 213–221.
- Nyikako J, Schierholt A, Kessel B & Becker HC (**2014**) Genetic variation in nitrogen uptake and utilization efficiency in a segregating DH population of winter oilseed rape. *Euphytica*. 199(1-2): 3–11.
- Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy A, Just J, Chalhoub B & Masclaux-Daubresse C (**2014**) Sixteen cytosolic glutamine synthetase genes identified in the *Brassica napus* L. genome are differentially regulated depending on nitrogen regimes and leaf senescence. *Journal of Experimental Botany*. 65(14): 3927–3947.
- Raun WR & Johnson GV (**1999**) Improving Nitrogen Use Efficiency for Cereal Production. *Agronomy Journal*. 91(3): 357.
- Rempel CB, Hutton SN & Jurke CJ (**2014**) Clubroot and the importance of canola in Canada. *Canadian Journal of Plant Pathology*. 36(sup1): 19–26.
- Riedelsheimer C, Czedik-Eysenberg A, Grieder C, Lisec J, Technow F, Sulpice R, Altmann T, Stitt M, Willmitzer L & Melchinger AE (**2012**) Genomic and metabolic prediction of complex heterotic traits in hybrid maize. *Nature Genetics*. 44(2): 217–220.
- Rossato L (**2001**) Nitrogen storage and remobilization in *Brassica napus* L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. *Journal of Experimental Botany*. 52(361): 1655–1663.
- Salon C, Bataillé M, Gallardo K, Jeudy C, Santoni A, Trouverie J, Voisin A & Avice J (**2014**) (34)S and (15)N labelling to model S and N flux in plants and determine the different components of N and S use efficiency. *Methods in molecular biology* (*Clifton, N.J.*). 1090: 335–346.
- Schjoerring JK, Bock, J. G. H., Gammelvind L, Jensen CR & Mogensen VO (1995) Nitrogen incorporation and remobilization in different shoot components of fieldgrown winter oilseed rape (*Brassica napus* L.) as affected by rate of nitrogen application and irrigation. *Plant and Soil*. 177(2): 255–264.
- Schnable PS & Springer NM (**2013**) Progress toward understanding heterosis in crop plants. *Annual Review of Plant Biology*. 64: 71–88.
- Shiga T & Baba S (**1973**) Cytoplasmic Male Sterility in Oil Seed Rape. Brassica napus L., and its Utilization to Breeding. *Japanese Journal of Breeding*. 23(4): 187–197.
- Shull GH (**1908**) The composition of a field of maize. *American Breeders' Association Report.* 4: 296–301.
- Shull GH (**1914**) Duplicate genes for capsule-form in *Bursa bursa-pastoris*. *Zeitschrift für Induktive Abstammungs- und Vererbungslehre (Molecular Genetics and Genomics)*. 12(1): 97–149.
- Smil V (1999) Detonator of the population explosion. *Nature*. 400(6743): 415.

- Snowdon RJ & Iniguez Luy FL (**2012**) Potential to improve oilseed rape and canola breeding in the genomics era. *Plant Breeding*. 131(3): 351–360.
- Stefansson BR & Hougen FW (**1964**) Selection of rape plants (*Brassica napus*) with seed oil practically free from erucic acid. *Canadian Journal of Plant Science*. 44(4): 359–364.
- Stefansson BR & Kondra ZP (**1975**) Tower Summer Rape. *Canadian Journal of Plant Science*. 55(1): 345–353.
- Thompson KF (**1972**) Cytoplasmic male-sterility in oil-seed rape. *Heredity*. 29(2): 253–257.
- Tillmann P & Paul C (**1998**) The repeatability file—a tool for reducing the sensitivity of near infrared spectroscopy calibrations to moisture variation. *Journal of Near Infrared Spectroscopy*. 6(1): 61.
- Tillmann P, Reinhardt T & Paul C (**2000**) Networking of near infrared spectroscopy instruments for rapeseed analysis: a comparison of different procedures. *Journal of Near Infrared Spectroscopy*. 8(1): 101.
- Tkachuk R (**1981**) Oil and protein analysis of whole rapeseed kernels by near infrared reflectance spectroscopy. *Journal of the American Oil Chemists' Society*. 58(8): 819–822.
- U N (**1935**) Genomic analysis in *Brassica* with special reference to the experimental formation of *B. napus* and peculiar mode of fertilization. *Japanese Journal of Botany*. 7: 389–452.
- Van Sanford DA & Mackown CT (**1986**) Variation in nitrogen use efficiency among soft red winter wheat genotypes. *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.* 72(2): 158–163.
- Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J, Bancroft I & Cheng F *et al.* (**2011**) The genome of the mesopolyploid crop species *Brassica rapa*. *Nature Genetics*. 43(10): 1035–1039.
- Weisler F, Behrens T & Horst WJ (**2001**) The role of nitrogen-efficient cultivars in sustainable agriculture. *The Scientific World Journal*. 1(2): 61–69.
- Zhao J, Becker HC, Zhang D, Zhang Y & Ecke W (**2006**) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. *TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik.* 113(1): 33–38.